JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Charges of TIP4P water model for mixed quantum/classical calculations of OH stretching frequency in liquid water
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Charges of TIP4P water model for mixed quantum/classical calculations of OH stretching frequency in liquid water
Jeon, Kiyoung; Yang, Mino;
  PDF(new window)
 Abstract
The potential curves of OH bonds of liquid water are inhomogeneous because of a variety of interactions with other molecules and this leads to a wide distribution of vibrational frequency which hampers our understanding of the structure and dynamics of water molecules. Mixed quantum/classical (QM/CM) calculation methods are powerful theoretical techniques to help us analyze experimental data of various vibrational spectroscopies to study such inhomogeneous systems. In a type of those approaches, the interaction energy between OH bonds and other molecules is approximately represented by the interaction between the charges located at the appropriate interaction sites of water molecules. For this purpose, we re-calculated the values of charges by comparing the approximate interaction energies with quantum chemical interaction energies. We determined a set of charges at the TIP4P charge sites which better represents the quantum mechanical potential curve of OH bonds of liquid water.
 Keywords
OH stretching;water;mixed quantum-classical calculation;
 Language
English
 Cited by
 References
1.
Ramasesha, K., De Marco, L., Mandal, A. and Tokmakoff, A., Nat. Chem., 2013, 5, 935. crossref(new window)

2.
De Marco, L., Ramasesha, K. and Tokmakoff, A., J. Phys. Chem. B, 2013, 117, 15319. crossref(new window)

3.
Eaves, J. D., Loparo, J. J., Fecko, C. J., Roberts, S. T., Tokmakoff, A. and Geissler, P. L., P. Natl. Acad. Sci. USA, 2005, 102, 13019. crossref(new window)

4.
Bakulin, A. A., Cringus, D., Pieniazek, P. A., Skinner, J. L., Jansen, T. L. C. and Pshenichnikov, M. S., J. Phys. Chem. B, 2013, 117, 15545. crossref(new window)

5.
Hsieh, C.-S., Campen, R. K., Okuno, M., Backus, E. H. G., Nagata, Y. and Bonn, M., P. Natl. Acad. Sci. USA, 2013, 110, 18780. crossref(new window)

6.
van der Post, S. T., Hsieh, C.-S., Okuno, M., Nagata, Y., Bakker, H. J., Bonn, M. and Hunger, J., Nat Commun, 2015, 6.

7.
Zhang, Z., Piatkowski, L., Bakker, H. J. and Bonn, M., Nat. Chem., 2011, 3, 888. crossref(new window)

8.
Bakker, H. J. and Skinner, J. L., Chem. Rev., 2010, 110, 1498. crossref(new window)

9.
Gruenbaum, S. M., Tainter, C. J., Shi, L., Ni, Y. and Skinner, J. L., J. Chem. Theory Comput., 2013, 9, 3109. crossref(new window)

10.
Roy, S., Gruenbaum, S. M. and Skinner, J. L., J. Chem. Phys., 2014, 141, 18C502. crossref(new window)

11.
Ni, Y. and Skinner, J. L., J. Chem. Phys., 2014, 141, 024509. crossref(new window)

12.
Tainter, C. J., Ni, Y., Shi, L. and Skinner, J. L., J. Phys. Chem. Lett., 2013, 4, 12. crossref(new window)

13.
Choi, J.-H. and Cho, M., J. Chem. Phys., 2013, 138, 174108. crossref(new window)

14.
Auer, B. M. and Skinner, J. L., J. Chem. Phys., 2008, 128, 224511. crossref(new window)

15.
Berendsen, H. J. C., Grigera, J. R. and Straatsma, T. P., J. Phys. Chem., 1987, 91, 6269. crossref(new window)

16.
Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R. W. and Klein, M. L., J. Chem. Phys., 1983, 79, 926. crossref(new window)

17.
Chai, J.-D. and Head-Gordon, M., J. Chem. Phys., 2008, 128, 084106. crossref(new window)

18.
Frisch, M. J., et al., (Gaussian, Inc., Wallingford, CT, USA, 2009).

19.
Jeon, K. and Yang, M., unpublished.

20.
Cizek, J., J. Chem. Phys., 1966, 45, 4256. crossref(new window)

21.
Raghavachari, K., Trucks, G. W., Pople, J. A. and Head-Gordon, M., Chem. Phys. Lett., 1989, 157, 479. crossref(new window)

22.
Hess, B., Kutzner, C., van der Spoel, D. and Lindahl, E., J. Chem. Theory Comput., 2008, 4, 435. crossref(new window)

23.
Truhlar, D. G., Chem. Phys. Lett., 1998, 294, 45. crossref(new window)