Advanced SearchSearch Tips
Charted Depth Interpolation: Neuron Network Approaches
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Charted Depth Interpolation: Neuron Network Approaches
Shi, Chaojian;
  PDF(new window)
Continuous depth data are often required in applications of both onboard systems and maritime simulation. But data available are usually discrete and irregularly distributed. Based on the neuron network technique, methods of interpolation to the charted depth are suggested in this paper. Two algorithms based on Levenberg-Marquardt back-propaganda and radial-basis function networks are investigated respectively. A dynamic neuron network system is developed which satisfies both real time and mass processing applications. Using hyperbolic paraboloid and typical chart area, effectiveness of the algorithms is tested and error analysis presented. Special process in practical applications such as partition of lager areas, normalization and selection of depth contour data are also illustrated.
charted depth;neuron network;function approximation;spatial interpolatio;
 Cited by
Chen, D. and Wang, C., The Wave Field's Distribution Features of the Main Synoptic Systems Affecting China Sea, Journal of Shanghai Maritime University, Vol23, No.1, 2002.3

Cressie, N., Statistics for spatial data: John Wiley & Sons, New York, 1993

Hagan, M. T., Demuth, H. B. and Beale, M., Neural Network Design, PWS Publishing Company, U.S.A., 1996

Haykin, S., Neural Networks: A Comprehensive Foundation, 2nd Ed. Prentice-Hall, Inc., U. S. A, 1999

Hu, S. and Shi, C., A Study on technical Design of Terrain with 3D in Shiphandling Simulators Development, Journal of Shanghai Maritime University, Vol.24, No.1, 2003.3

International Hydrographic Organization, IHO Transfer Standard For Digital Hydrographic Data, Publication S-57, Edition 3.0, March 1996

Micchelli,C.A., Interpolation of Scattered Data: Distance Matrices and Cond itionally Positive Definite Functions. Constructive Approximation, Vol.2, 1986

Shi, C., Application and Functional Requirements of Simulator in Harbor and Waterway Design, Journal of Korean Navigation and Port Research, Vol.26, No.1, March 2002

Wu, X., Principles and Methods of Geographic Information Systems, Publishing House of Electronic Industry, Beijing, 2002

Xiao, Y., A Study of Ship Form Through Simulation Tests for Shanghai Deep Port, Journal of Shanghai Maritime University, Vol.23, No.3, 2002.9

Zimmerman, D., An Experimental Comparison of Ordinary and Universal Kriging and Inverse Distance Weighting, Mathematical Geology, Vol. 31, No.4, 1999