Modified Compact Combline Filter Using Planar Parallel Coupled Structure with Extended Rejection Bandwidth

- Journal title : Journal of Navigation and Port Research
- Volume 34, Issue 7, 2010, pp.543-552
- Publisher : Korean Institute of Navigation and Port Research
- DOI : 10.5394/KINPR.2010.34.7.543

Title & Authors

Modified Compact Combline Filter Using Planar Parallel Coupled Structure with Extended Rejection Bandwidth

Kang, In-Ho; Wang, Kai; Li, Shang MIng;

Kang, In-Ho; Wang, Kai; Li, Shang MIng;

Abstract

Modified compact combline bandpass filters are proposed based on the miniaturized quarter-wave transmission line which is composed of the parallel coupled line and lumped capacitors. The electrical length of the parallel coupled line in a resonator, which determines the size of combline bandpass filters, is just or , resulting in a compact circuit area. The designed combline bandpass filter also has a wide upper stopband by suppressing the spurious passbands, not moving. Measured results of two fabricated filters centered at 400MHz show good agreement with the theoretical predications.

Keywords

Miniaturization;combline filter;parallel coupled line;

Language

English

References

2.

Djaiz A. and Denidni T. A. (2006), “A new compact microstrip two-layer bandpass filter using apertured-coupled SIR-hairpin resonators with transmission zeros,” IEEE Trans. Microwave Theory Tech., vol.54, no.5, pp.1929-1936

3.

Garcia J. G. and Bonache J. (2006), “Miniaturized microstrip and CPW filters using coupled metamaterial resonators,” IEEE Trans. Microwave Theory Tech., vol. 54. no. 6. pp. 2628-2635

4.

Hong J. S. and Lancaster M.J. (1998), “Cross-coupled microstrip hairpin-resonator filters,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 1, pp. 118-122.

5.

Hong J. S. and Lancaster M. J. (1997), “Theory and experiment of novel microstrip slow-wave open-loop resonator filters,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 12, pp. 2358–2365

6.

Hong J. S. and Lancaster M. J. (1996), “Cross-coupled microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 11, pp. 2099–2109

7.

Ju L. H., Bhattacharya P., Katehi L.P.B. (1984), “X-band and K-band lumped Wilkinson power dividers with a micromachined technology” IEEE MTT-S Digest, pp.409-411

8.

Kang I. H. and Park J. S. (2003), “A reduced-size power divider using the coupled line equivalent to a lumped inductor,” Microwave Journal, vol. 46, no. 7

9.

Kang I. H. and Xu H. Y. (2007), “An Extremely Miniaturized Microstrip Bandpass Filter,” Microwave Journal, vol. 50, no. 5, pp. 228–233

10.

Kang, I., Wang, S., Yun, Y., Jhang, H. (2008) "Theoretical analysis on attenuation of the 5 GHz miniaturized GaAs MMIC bandpas filter", Microwave Journal, August,

11.

Kuo J. T., Chen S. P. and Jiang M. (2003), “Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses,” IEEE Trans. Microwave Theory Tech., vol. 13, no. 10, pp. 440-442

12.

Kuo J. T., Jiang M. and Chang H. J. (2004), “Design of parallel-coupled microstrip filters with suppression of spurious resonances using substrate suspension,” IEEE Trans. Microwave Theory Tech., vol .52, no. 1, pp.83-89

13.

Kuo J. T. and Shih E. (2003), “Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microwave Theory Tech., vol.51, no.5, pp. 1554-1559

14.

Kong Y. W. and Chew S.T. (2004), “A miniaturizedend-coupled filter using stepped-impedance resonators,” Micro. Opt. Technol. .Lett., Vol. 46, no. 2, pp. 97-99

15.

Lin Y. S. and Wang C. H. (2005), “Novel compactparallel-coupled microstrip bandpass filters with lumped-element K-inverters,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 7, pp. 2324–2328

16.

Lopetegi T. and Laso M. A. G. (2001), “New microstrip wiggly line filters with spurious passband suppression,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 9, pp. 1593-1598

17.

Matthaei G., Young L. and Jones E.M.T. (1980), Microwave Filters, Impedance Matching Networks and Coupling Structures, Artech House Inc., Norwood, MA 1980, p. 500.

18.

Matthaei G., Young L. and Jones E.M.T. (1980), Microwave Filters, Impedance Matching Networks and Coupling Structures, Artech House Inc., Norwood, MA 1980, p. 433

19.

Makimoto M. and Yamashita S. (1980), “Bandpass filters using parallel coupled strip-line stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, no. 12, pp. 1413–1417

20.

Pang H. K. and Ho K. M. (2004), “A compact microstrip λ/4-SIR interdigial bandpass filter with extended stopband,” IEEE MTT-S Digest, pp. 1621–1624

21.

Pistono E., Robert M. and Duvillaret L. (2006), “Compact fixed and tune-all bandpass filters based on coupled slow-wave resonators,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 6, pp. 2790-2799

22.

Sagawa M., Takahashi K., and Makimoto M. (1989), "Miniaturized hairpin resonator filers and their application to receiver fron-end MIC’s," IEEE Trans. Microwave Theory Tech., vol..37, no.12, pp. 1991-1997

23.

Tang C. W., Lin Y. C. and Chang C. Y. (2003), “Realization of transmission zeros in combline filters using an auxiliary inductively coupled ground plane,” IEEE Trans. Microwave Theory Tech., vol.51, no.10, pp.2112-2118

24.

Tang C. W and S. F, You(2006), “Design Methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 2, pp. 717-723

25.

Wang S. M., Chi C. H. and Hsieh M. Y. (2005), “Miniaturized spurious passband suppression microstrip filter using meandered parallel coupled lines,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 2, pp. 747-753

26.

Wang X., Liu P., and Li Y. (2004), “New compact configuration of a stepped-impedance ceramic bandpass filter,” Micro. Opt. Technol.Lett., Vol. 41, no. 2, pp. 146-149

27.

Wang, X. G., Yun, Y. and Kang, I. H.(2009), “Compact Multi-harmonic Suppression LTCC Bandpass Filter Using Parallel Short-ended Coupled Line Structure,” ETRI Journal, vol. 30, no.3, June p. 254-262.