Advanced SearchSearch Tips
Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Sea
  • Volume 21, Issue 1,  2016, pp.1-10
  • Publisher : The Korean Society of Oceanography
  • DOI : 10.7850/jkso.2016.21.1.1
 Title & Authors
Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model
  PDF(new window)
Currently available surface seawater partial pressure carbon dioxide () data sets in the East Sea are not enough to quantify statistically the carbon dioxide flux through the air-sea interface. To complement the scarcity of the measurements, we construct a neural network (NN) model based on satellite data to map for the areas, which were not observed. The NN model is constructed for the Ulleung Basin, where data are best available, to map and estimate the variability of based on in situ for the years from 2003 to 2012, and the sea surface temperature (SST) and chlorophyll data from the MODIS (Moderate-resolution Imaging Spectroradiometer) sensor of the Aqua satellite along with geographic information. The NN model was trained to achieve higher than 95% of a correlation between in situ and predicted values. The RMSE (root mean square error) of the NN model output was and much less than the variability of in situ . The variability of with respect to SST and chlorophyll shows a strong negative correlation with SST than chlorophyll. As SST decreases the variability of increases. When SST is lower than , variability is clearly affected by both SST and chlorophyll. In contrast when SST is higher than , the variability of is less sensitive to changes in SST and chlorophyll. The mean rate of the annual increase estimated by the NN model output in the Ulleung Basin is from 2003 to 2014. As NN model can successfully map data for the whole study area with a higher resolution and less RMSE compared to the previous studies, the NN model can be a potentially useful tool for the understanding of the carbon cycle in the East Sea, where accessibility is limited by the international affairs.
;neural network model;mapping;Ulleung Basin;East Sea;
 Cited by
Estimation of Fugacity of Carbon Dioxide in the East Sea Using In Situ Measurements and Geostationary Ocean Color Imager Satellite Data, Remote Sensing, 2017, 9, 8, 821  crossref(new windwow)
Beale, M., M.T. Hagan and H.B. Demuth, 2010. Neural Network Toolbox 7. MathWorks, Natick, Mass, 951 pp.

Borges, A.V., B. Delille and M. Frankignoulle, 2005. Budgeting sinks and sources of $CO_2$ in the coastal ocean: Diversity of ecosystems counts. Geophys. Res. Lett., 32: L14601, doi: 10.1029/2005GL023053. crossref(new window)

Broecker, W.S., 1982. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta, 46(10): 1689-1705 pp. crossref(new window)

Cai, W.-J., M.H. Dai and Y.C. Wang, 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophys. Res. Lett., 33: L12603, doi: 10.1029/2006GL026219. crossref(new window)

Chen, C.-T. A. and A. V. Borges, 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystem as sources of atmospheric $CO_2$. Deep-Sea Res. Pt. II, 56: 578-590, doi:10.1016/j.dsr2.2009.01.001. crossref(new window)

Cho, Y.-K. and K. Kim, 1996. Seasonal variation of East Korea Warm Current and its relation with the cold water. Societe franco-japonaise d'oceanographie, La mer 34: 172-182.

Choi, S.H., 1995. Distributions of $pCO_2$ and $pCH_4$ in surface seawaters of the East Sea, M.S. thesis, Seoul National University, Seoul, 92 pp.

Choi, S.H., D. Kim, J. Shim and H.S. Min, 2011. The spatial distribution of surface $fCO_2$ in the Southwestern East Sea/Japan sea during summer 2005. Ocean Sci. J., 46(1): 13-21. crossref(new window)

Choi, S.-H., D. Kim, J.H. Shim, K.H. Kim, H.S. Min and K.R. Kim, 2012. Seasonal variations of surface $fCO_2$ and sea-air $CO_2$ fluxes in the Ulleung Basin of the East/Japan Sea. Terr. Atmos. Ocean. Sci., 23(3): 343-353. crossref(new window)

Choi, S.H., 2012. The Sea-Air $CO_2$ fluxes in the Korean Marginal Seas and the Western North Pacific. Ph.D Thesis, Seoul National University, Seoul, 123 pp.

Friedrich, T. and A. Oschlies, 2009a. Neural network-based estimates of North Atlantic surface $pCO_2$ from satellite data: A methodological study. J. Geophys. Res., 114, C03020, doi: 10.1029/2007JC004646. crossref(new window)

Friedrich, T. and A. Oschlies, 2009b. Basin-scale $pCO_2$ maps estimated from ARGO float data: A model study, J. Geophys. Res., 114, C10012, doi:10.1029/2009JC005322. crossref(new window)

Intergovernmental Panel on Climate Change (IPCC), 2013. Climate change 2013: the physical science basis, Cambridge University Press, 996 pp.

Jo, Y.H., M. Dai, W. Zhai, X.H. Yan and S. Shang, 2012. On the variations of sea surface $pCO_2$ in the northern South China Sea: A remote sensing based neural network approach. J. Geophys. Res.: Oceans (1978-2012), 117, C08022, doi:10.1029/2011JC007745. crossref(new window)

Kang, D.J., 1999. A study on the carbon cycle in the East Sea. Ph.D Thesis, Seoul National University, Seoul, 159 pp.

Kim, J.Y., D.J. Kang, T. Lee, and K.-R. Kim, 2014. Long-term trend of $CO_2$ and ocean acidification in the surface water of the Ulleung Basin, the East/Japan Sea inferred from the underway observational data. Biogeosciences, 11(9): 2443-2454. crossref(new window)

Kim, K.-R. and K. Kim, 1996. What is happening in the East Sea (Japan Sea)?: Recent chemical observations during CREAMS93-96. J. Korean Soc. Oceanogr., 31: 164-172.

Landschutzer, P., N. Gruber, D.C.E. Bakker, U. Schuster, S. Nakaoka, M.R. Payne, T.P. Sasse and J. Zeng, 2013. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences, 10(11): 7793-7815. crossref(new window)

Lefevre, N., A. Watson and A.R. Watson, 2005. A comparison of multiple regression and neural network techniques for mapping in situ $pCO_2$ data. Tellus B, 57: 375-384. crossref(new window)

Mitchell, D.A., D.R. Watts, M. Wimbush, W.J. Teague, K.L. Tracey, J.W. Book, K.-I. Chang, M.-S. Suk and J.-H. Yoon, 2005. Upper circulation patterns in the Ulleung Basin. Deep-Sea Res. Pt. II, 52: 1617-1638.

Oh, D.-C., M.-K. Park, S.-H. Choi, D.-J. Kang, S.-Y. Park, J.-S. Hwang, A. Andrey, G.-H. Hong and K.-R. Kim, 1999. The Air-Sea Exchange of $CO_2$ in the East Sea(Japan Sea). J. Oceanogr., 55: 157-169. crossref(new window)

Omar, A.M., T. Johannessen, A. Olsen, S. Kaltin and F. Rey, 2007. Seasonal and interannual variability of the air-sea $CO_2$ flux in the Atlantic sector of the Barents Sea. Mar. Chem., 104: 203-213. crossref(new window)

Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T.-H. Peng, K. Alexander, O. Tsueno and A.F. Rios, 2004. The oceanic sink for anthropogenic $CO_2$. Science, 305(5682): 367-371. crossref(new window)

Sarmiento, J.L. and N. Gruber, 2002. SINKS FOR ANTHROPOGENIC CARBQN.

Takahashi, T., J. Olafsson, J.G. Goddard, D.W. Chipman and S.C. Sutherland, 1993. Seasonal variation of $CO_2$ and nutrients in the high-latitude surface oceans: A comparative study. Global Biogeochem. Cycles, 7(4): 843-878. crossref(new window)

Takahashi, T., S.C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R.F. Feely, C. Sabine, J. Olafsson and Y. Nojiri, 2002. Global sea-air $CO_2$ flux based on climatological surface ocean $pCO_2$ and seasonal biological and temperature effects. Deep-Sea Res. Pt. II, 49: 1601-1622. crossref(new window)

Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, D.W. Chipman, B. Hales, G. Friederich, F. Chavez, C. Sabine, A. Watson, D.C.E. Bakker, U. Schuster, N. Metzl, Y.-I. Hisayuki, M. Ishii, T. Midorikawa, Y. Nojiri, A. Kortzinger, T. Steinhoff, M. Hoppema, J. Olafsson, T.S. Arnarson, B. Tilbrook, T. Johannessen, A. Olsen, R. Bellerby, C.S. Wong, B. Delille, N.R. Bates and H. J. and De Baar, 2009. Climatological mean and decadal change in surface ocean $pCO_2$ and net sea-air $CO_2$ flux over the global oceans. Deep-Sea Res. Pt. II, 56(8): 554-577. crossref(new window)

Talley, L.D., J.L. Reid, and P.E. Robbins, 2003. Data-based meridional overturning stream functions for the global ocean. J. Climate, 16(19): 3213-3226. crossref(new window)

Telszewski, M., X.A. Padin, and A.F. Rios, 2009. Estimating the monthly $pCO_2$ distribution in the North Atlantic using a self-organizing neural network. Biogeosciences, 6(8): 1405-1421. crossref(new window)

Thomas H., Y. Bozec, K. Elkalay and H.J. De Baar, 2004. Enhanced open ocean storage of $CO_2$ from shelf sea pumping. Science, 304: 1005-1008. crossref(new window)

Tsunogai, S., S. Watanabe and T. Sato, 1999. Is there a "continental shelf pump" for the absorption of atmospheric $CO_2$?. Tellus B, 51(3): 701-712. crossref(new window)

Tsunogai, S., K. Kawada, S. Watanabe and T. Aramaki, 2003. CFCs indicating renewal of the Japan Sea Deep Water in winter 2000-2001. J. Oceanogr., 59: 685-693. crossref(new window)

Volk, T. and M. Hoffert, 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric $CO_2$ changes, In: The Carbon Cycle and atmospheric $CO_2$: Natural Variations Archean to Present, edited by: Sundquist, E.T. and W.S. Broecker, Geophysical Monograph 32, American Geophysical Union, Wash. D.C. pp. 99-110.

Yamada, K., J. Ishizaka, S. Yoo, H.C. Kim and S. Chiba, 2004. Seasonal and interannual variability of sea surface chlorophyll_a concentration in the Japan/East Sea (JES). Prog. Oceanogr., 61(2): 193-211. crossref(new window)