JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on the 3D Analysis of Debris Flow Based on Large Deformation Technique (Coupled Eulerian-Lagrangian)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on the 3D Analysis of Debris Flow Based on Large Deformation Technique (Coupled Eulerian-Lagrangian)
Jeong, Sang-Seom; Lee, Kwang-Woo; Ko, Jun-Young;
  PDF(new window)
 Abstract
This paper presents the application of the Coupled Eulerian-Lagrangian (CEL) technique to simulate the debris flow. The main objective of this study is to investigate the applicability of CEL technique to the behavior of debris flow, such as flow velocity and influence area. Comprehensive studies to verify the behavior of debris flow are presented in this study. Through comparison with measured flow velocity from Umyeonsan (Mt.), CEL approach was found to be in good agreement with the general trend observed by in actual debris flow. In addition, CEL technique accurately simulated the behavior of debris flows, therefore, it can be used for designing the countermeasure structure.
 Keywords
Large deformation FE analysis;Coupled Eulerian-Lagrangian technique;Debris flow analysis;Flow velocity;Countermeasure structure;
 Language
Korean
 Cited by
1.
Application of a Coupled Eulerian-Lagrangian Technique on Constructability Problems of Site on Very Soft Soil, Applied Sciences, 2017, 7, 10, 1080  crossref(new windwow)
 References
1.
ABAQUS. (2013), ABAQUS user's and theory manuals, Version 6.13. rhode island: Hibbitt, Karlsson & Sorensen, Inc.

2.
Borja, R.I. and White, J.A. (2010), "Continuum Deformation and Stability Analyses of a Steep Hillside Slope under Rainfall Infiltration", Acta Geotechnica, Vol.5, pp.1-14. crossref(new window)

3.
Che, B. G., Cho, Y. C., and Song, Y. S. (2008), "The Current States of Debris Flow Hazards and Suggestion of Damage", Proceedings of Korean Geotechnical Society, Gwangju, Korea, pp.302-331.

4.
Hunger, O. and Morgenstern, N.R. (1984), "High Velocity Ring Sheartests on Sand", Geotechnique, Vol.34 No.3, pp.415-421. crossref(new window)

5.
Imran, J., Harff, P., and Parker, G. (2001), "A Numerical Model of Submarine Debris Flow with Graphical User Interface", Computers & Geosciences, Vol.27, No.6, pp.717-729. crossref(new window)

6.
Iverson, R.M. (2003), "The Debris-flow Rheology Myth", In Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, pp.303-314. Millpress, Rotterdam.

7.
Jeong, S.W., Locat, J., Leroueil, S., and Malet, J. P. (2010), "Rheological Properties of Fine-Grained Sediments: the Roles of Texture and Mineralogy", Can. Geotech. J., Vol.47, pp.1011-1023. crossref(new window)

8.
Jeong, S. S., Kim, J. H., Kim, Y. M., and Bae, D. H. (2014), "Susceptibility Assessment of Landslides under Extreme-rainfall Events Using Hydro-geotechnical Model; A Case Study of Umyeonsan (Mt.), Korea", Nat. Hazards Earth Syst. Sci. Discuss., Vol.2, pp. 5575-5601. crossref(new window)

9.
Julien, P. Y. and O'Brien, J. S. (1997), "Selected Notes on Debris Flow Dynamics, Recent Developments on Debris Flows", Lecture note in earth sciences, Springer, Berlin, pp.144-162.

10.
Kim, J. H., Jeong, S. S., and Regueiro, R. A. (2012), "Instability of Partially Saturated Soil Slopes due to Alteration of Rainfall Patten", Engineering Geology, Vol.147, pp.28-36.

11.
Kim, J., Jeong, S., and Kim, K. (2014), "GIS-based Prediction Method of Landslide Susceptibility Using a Rainfall Infiltration groundwater Flow Model", Engineering Geology, Vol.182, pp.63-78. crossref(new window)

12.
Kim, S. E., Paik, J. C., and Kim, K. S. (2013), "Run-out Model of Debris Flows in Mt. Umyeon Using FLO-2D", Journal of the Korean Society of Civil Engineers, Vol.33, No.3, pp.965-974. crossref(new window)

13.
Kim, S. K. and Seo, H. S. (1997), "Rheological Characteristic of Debris Flow", Journal of the Korean Geotechnical Society, Vol.13, No.5, pp.125-131.

14.
Kim, Y. H. and Jeong, S. S. (2014), "Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Methods", Journal of the Korean Society of Civil Engineers, Vol.34, No.3, pp.895-906. crossref(new window)

15.
Ko, J. Y., Jeong, S. S., and Lee, S. Y. (2015), "A Study on the 3D Analysis of Deiven Pile Penetration Based on Coupled Eulerian-Lagrangian (CEL) Methods", Journal of the Korean Geotechnical Socity, Vol.31, No.8, pp.29-38.

16.
Lee, M. J. and Kim, Y. T. (2013), "Movement and Deposition Characteristics of Debis Flow According to Rheological Factors", Journal of the Korean Geotechnical Socity, Vol.29, No.5, pp.19-27.

17.
Lin, P.-S., Lee, J.-H., and Chang, C.. W. (2011), "An Application of the FLO-2D Model to Debris-flow Simulation a Case of SONGHER District in TAIWAN", Proc. of 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, pp.947-956.

18.
Liu, K. F. and Huang, M. C. (2006), "Numerical Simulation of Debris Flow with Application on Hazard Area Mapping," Computational Geosciences, Vol.10, pp.221-240. crossref(new window)

19.
O'Brien, J. S. and Julien, P. Y. (1985), "Physical Properties and Mechanics of Hyper-concentrated Sediment Flows", Proceedings of the Specialty Conference on Delineation of Landslide, Flash Flood and Debris Flow Hazard in Utah, Utah State University, Utah, pp.260-279.

20.
Paik, J. (2011), "Run-out Analysis of Debris Flows on July 2011 in Mt. Umyeon." Proc. of 37th Annual Conference of Korean Society of Civil Engineers, KINTEX, Goyang-si, Korea (in Korean).

21.
Pierson, T. C. (1986), "Flow Behavior of Channelized Debris Flows", Mount St. Helens. Washington. In A. D. Abrahams (ed). Hillslope Processes: 269-296.

22.
Qiu, G., Henke, S., and Grabe J. (2011), "Application of a Coupled Eulerian-Lagrangian Approach on Geomechanical Problems Involving Large Deformations", Computers and Geotechnics, Vol.38, pp.30-39. crossref(new window)

23.
Rahardjo, H., Ong, T., Rezaur, R., and Leong, E. C. (2007), "Factors Controlling Instability of Homogeneous Soil Slopes under Rainfall", Journal of Geotechnical and Geoenvironmental Engineering, Vol.133, No.12, pp.1532-1543. crossref(new window)

24.
Takahashi, T. (2007), Debris flow: Mechanics, Prediction and Countermeasures, Taylor & Francis Group, London, UK.

25.
Wang, D., Hu, Y., and Randolph, M. F. (2010), "Three-dimensional Large Deformation Finite-element Analysis of Plate Anchors in Uniform Clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.2, pp.355-365. crossref(new window)

26.
WSL Institute for Snow and A valanche Research SLF. 2011. RAMMS User Manual v1.5 Debris Flow. WSL Institute for Snow and A valanche Research SLF.

27.
Yu, B. O., Chang, B. S., Choi, S. I., Choi, Y. K., and Lee, J. H. (2006), "Debris Flow Case Study and Remediation in Kangwon Province", The Korean Society for Railway, pp.407-410.

28.
Zhu, H. and Randolph, M. (2010), "Large Deformation Finite-Element Analysis of Submarine Landslide Interaction with Embedded Pipelines", International Journal of Geomechanics, Vol.10, pp.145-152. crossref(new window)