JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Failure Mechanism Evaluation in Normally Consolidated Cohesive Soils by Plane Strain Test with Digital Image Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Failure Mechanism Evaluation in Normally Consolidated Cohesive Soils by Plane Strain Test with Digital Image Analysis
Kwak, Tae-Young; Kim, Joon-Young; Chung, Choong-Ki;
  PDF(new window)
 Abstract
Soil failure is initiated and preceded by forming and progressing of shear band, defined as the localization of deformation into thin zones of soil mass. To understand the failure mechanism of normally consolidated cohesive soil, the spatial distribution and evolution of deformation within the entire specimen need to be evaluated. In this study, vertical compression tests under plane strain condition were performed on reconstituted kaolinite specimens, while capturing digital images of the specimen at regular intervals during shearing. Overall stress-strain behavior from initial to post peak has been analyzed together with spatial distributions of deformations and shear band characteristics from digital images at 4 stages.
 Keywords
Failure mechanism;Plane strain test;Digital image analysis;Strain distribution;Shear band characteristics;
 Language
Korean
 Cited by
 References
1.
Kim, J. Y., Jang, E. R., and Chung, C. K. (2011), "Evaluation of Accuracy and Optimization of Digital Image Analysis Technique for Measuring Deformation of Soils", Journal of the Korean Geotechnical Society, Vol.27, No.7, pp.5-16.

2.
Jang, E. R., Jung, Y. H., and Chung, C. K. (2009), "An Optimal Digital Image Analysis Technique for Measuring Deformation of Granular Soils", Journal of the Korean Geotechnical Society, Vol.25, No.12, pp.119-130.

3.
Jang, E. R., Jung, Y. H., Kim, J. Y., and Chung, C. K. (2011), "Assessment of Shear Band Characteristics in Granular Soils Using Digital Image Analysis for Plane Strain Tests", Journal of the Korean Geotechnical Society, Vol.27, No.4, pp.51-65.

4.
Alshibli, K. A. and Sture, S. (1999), "Sand Shear Band Thickness Measurements by Digital Imaging Techniques", Journal of Computing in Civil Engineering, Vol.13, No.2, pp.103-109. crossref(new window)

5.
Alshibli, K. A., Batiste, S. N., and Sture, S. (2003), "Strain Localization in Sand: Plane Strain vs. Triaxial Compression", ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol.129, No.6, pp.1-12. crossref(new window)

6.
Alshibli, K., Godbold, D. L., and Hoffman, K. (2004), "Strain Localization in Clay: Plane Strain versus Triaxial Loading Conditions", Geotechnical Testing Journal, Vol.27, No.4, pp.337-346.

7.
Alshibli, K. A. and Akbas, I. S. (2007), "Sand Shear Band Thickness Measurements by Digital Imaging Techniques", Geotechnical & Geological Engineering, Vol.25, pp.45-55. crossref(new window)

8.
Arthur, J. R. F., Dunston, T., Al-Ani., Q. A. J., and Assadi. A. (1977), "Plastic Deformation and Failure in Granular Media", Geotechnique, Vol.27, No.1, pp.53-74 crossref(new window)

9.
Callisto, L. and Calabresi, G. (1998), "Mechanical Behaviour of Natural Soft Clay", Geotechnique, Vol.48, No.4, pp.495-513. crossref(new window)

10.
Desreus, J., Chambon, M., Mokni, and Mazerolle, F. (1996), "Void Ratio Evolution Inside Shear Bands in Triaxial Sand Specimens Studied by Computed Tomography", Geotechnique, Vol.46, No.3, pp.529-546. crossref(new window)

11.
Finno, R. J., Harris, W. W., Mooney, M. A., and Viggiani, G. (1997), "Shear Bands in Plane Strain Compression of Loose sand", Geotechnique, Vol.47, No.1, pp.149-165. crossref(new window)

12.
Gylland, A. S., Jostad, H. P., and Nordal, S. (2014), "Experimental Study of Strain Localization in Sensitive Clays", Acta Geotechnica, Vol.9, pp.227-240. crossref(new window)

13.
Hicher, P. Y., Wahyudi, H., and Tessier, D. (1994), "Microstructural Analysis of Strain Localisation in Clay", Computers and Geotechnics, Vol.16, pp.205-222. crossref(new window)

14.
Jang, D. J. and Frost, J. D. (2000), "Use of Image Analysis to Study the Microstructure of a Failed Sand Specimen", Canadian Geotechnical Journal, Vol.37, pp.1141-1149. crossref(new window)

15.
Jang, E. R., Chung, C. K., and Choo, Y. S. (2011), "Estimation of Spatial Deformation in Granular Soil Specimens by Plane Strain Test with Digital Image Analysis", Proceedings of the Twenty-first International Offshore and Polar Engineering Conference, pp.397-404.

16.
Kim, J. Y., Jang, E. R., Yune, C. Y., and Chung, C. K. (2011), "Internal Deformation of Soil during Consolidation in Radial Drainage Condition", International Symposium on Deformation Characteristics of Geomaterials, pp.1144-1149.

17.
Lin, H. and Penumadu, D. (2006), "Strain Localization in Combined Axial Torsional Testing on Kaolin Clay", Journal of Engineering Mechanics, Vol.132, No.5, pp.555-564. crossref(new window)

18.
Oda, M. and Kazama, H. (1998), "Microstructure of Shear Bands and its Relation to the Mechanisms of Dilatancy and Failure of Dense Granular Soils", Geotechnique, Vol.48, No.4, pp.465-481. crossref(new window)

19.
Peters, J., Lade, P., and Bro, A. (1988), "Shear Band Formation in Triaxial and Planes Strain Tests", Advanced triaxial testing of soil and rock, ASTM, STP977.

20.
Rhee, Y. (1991), "Experimental Evaluation of Strain-softening behavior of Normally Consolidated Chicago Clays in Plane Strain Compression", Ph.D. Dissertation, Northwestern University, Evanston, Illinois.

21.
Roscoe, K. H. (1970), "The Influence of Strains in Soil Mechanics", Geotechnique, Vol.20, No.2, pp.129-170. crossref(new window)

22.
Saada, A. S., Bianchini, G. F., and Liang, L. (1994), "Cracks, Bifurcationand Shear Bands Propagation in Saturated Clays", Geotechnique, Vol.44, No.1, pp.35-64. crossref(new window)

23.
Wong, R. C. K. (2000), "Shear Deformation of Locked Sand in Triaxial Compression", Geotechnical Testing Journal, GTJODJ, Vol.23, No.2, pp.158-170. crossref(new window)

24.
White, D. J. and Take, W. A. (2003), "GeoPIV: Particle Image Velocimetry (PIV) Software for Use in Geotechnical Testing", Technical Report, Cambridge University Department of Engineering, Cambridge, UK.

25.
White, D. J., Take, W. A., and Bolton, M. D. (2003), "Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry", Geotechnique, Vol.53, No.7, pp.619-631. crossref(new window)