JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Evaluation of Elastic Properties for Nanoscale Coating Layers Using Ultrasonic Atomic Force Microscopy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Evaluation of Elastic Properties for Nanoscale Coating Layers Using Ultrasonic Atomic Force Microscopy
Kwak, Dong Ryul; Cho, Seung Bum; Park, Ik Keun;
  PDF(new window)
 Abstract
Ultrasonic atomic force microscopy (Ultrasonic-AFM) has been used to investigate the elastic property of the ultra-thin coating layer in a thin-film system. The modified Hertzian theory was applied to predict the contact resonance frequency through accurate theoretical analysis of the dynamic characteristics of the cantilever. We coat 200 nm thick Aluminum and Titanium thin films on the substrate using the DC Magnetron sputtering method. The amplitude and phase of the contact resonance frequency of a vibrating cantilever varies in response to the local stiffness constant. Ultrasonic-AFM images were obtained using the variations in the elastic property of the materials. The morphology of the surface was clearly observed in the Ultrasonic-AFM images, but was barely visible in the topography. This research demonstrates that Ultrasonic-AFM is a promising technique for visualizing the distribution of local stiffness in the nano-scale thin coatings.
 Keywords
Ultrasonic atomic force microscopy;Nanoscale thin coatings;Elastic properties;Contact resonance frequency;Micro cantilever;Contact stiffness;
 Language
Korean
 Cited by
1.
Evaluating Interfacial Adhesion Properties of Pt/Ti Thin-Film by Using Acousto-Optic Technique, Journal of the Korean Society for Nondestructive Testing, 2016, 36, 3, 188  crossref(new windwow)
 References
1.
Ahn, H. S., 2007, Estimation of Nanomechanical Properties of Nanosurfaces using Phase Contrast Imaging in Atomic Force Microscopy, Transactions of the KSMTE, 16:5 115-121.

2.
Lee, J. M., Han Y. H., Kwak D. R., Park, I. K., 2014, Analaysis of Contact Resonance Frequency Characteristics for Cantilever of Ultrasonic-AFM using Finite Element Method, Journal of the KSMTE, 23:5 478-484.

3.
Ahn, H. S., Jang, D. Y., 2009, Analysis of Nano-contact between Nano-asperities using Atomic Force Microscopy, Journal of the KSMTE, 18:4 369-374.

4.
King, R. B., 1987, Elastic Analysis of Some Punch Problems for a Layered Medium, Int. J. of Solids and Structures, 23:12 1657-1664. crossref(new window)

5.
Chen, X., Vlassak, J. J., 2001, Numerical Study on the Measurement of Thin Film Mechanical Properties by Means of Nanoindentation, J. of Mat. Res., 16:10 2974-2982. crossref(new window)

6.
Tayebi, N., Polycarpou, A. A., Conry, T. F., 2001, Effects of Substrate on Determination of Hardness of Thin Films by Nanoscratch and Nanoindentation Techniques, J. of Mat. Res., 19:6 1791-1802.

7.
Ashrafi, B., Das, K., Faive, L. R., Hubert, P., Vengallatore, S., 2012, Measuring the elastic properties of freestanding thick films using a nanoindenter-based bending Test, Experimental Mechanics, 52(4), 371-378. crossref(new window)

8.
Kourtis, L. C., Carter, D. R., Beaupre, G. S., 2014, Improving the Estimate of the Effective Elastic Modulus Derived from Three-point Bending Tests of Long Bones, Annals of Biomedical Engineering, 42:8 1773-1780. crossref(new window)

9.
Alfano, M., Pagnotta, L., 2006, Measurement of the Dynamic Elastic Properties of a Thin Coating, Rev. of Sci. Instrum., 77:5 056107. crossref(new window)

10.
Schneider, D., Schwaz, T., Schultrich, B., 1992, Determination of Elastic Modulus and Thickness of Surface Layers by Ultrasonic Surface Waves, Thin Solid Films, 219:1-2 92-102. crossref(new window)

11.
Tsuchiya, T., Ito, K., Miyoshi, S., Enoki, M., Yamaguchi, S., 2014, In-situ Monitoring of Oxide Ion Induced Breakdown in Amorphous Tantalum Oxide Thin Film using Acoustic Emission Measurement, Mater. Trans., 55:10 1553-1556. crossref(new window)

12.
Chudoba, T., Schwarzer, N., Richter, F., 2000, Determination of Elastic Properties of Thin Films by Indentation Measurements with a Spherical Indenter, Surf. Coat. Technol., 127:1 9-17. crossref(new window)

13.
Liu, S., Wang, Q. J., 2007, Determination of Young's Modulus and Poisson's Ratio for Coatings, Surf. Coat. Technol., 201:14 6470-6477. crossref(new window)

14.
Liu, S., Peyronnel, A., Wang, Q. J., Keer, L. M., 2005, An Extension of the Herz Theory for 2D Coated Components, Tribol. Lett., 18:4 505-511. crossref(new window)

15.
Park, T. S., Kwak, D. R., Park, I. K., Kim, C. S., Jhang, K. Y., 2011, Evaluation of Elastic Properties and Analysis of Contact Resonance Frequency of Cantilever for Ultrasonic AFM, J. of KSNT, 31:2 174-180.

16.
Cunfu, H., Gaimei, Z., Bin, W., Zaiqi, W., 2010, Subsurface Defect of the SiOx Film Imaged by Atomic Force Acoustic Microscopy, Optics and Laser in Engineering, 48:11 1108-1112. crossref(new window)

17.
Banerjee, S., Gayathri, N., Dash, S., Tyagi, A. K., Raj, B., 2005, A Comparative Study of Contact Resonance Imaging using Atomic Force Microscopy, Appl. Phys. Lett., 86:21 211913. crossref(new window)

18.
Rabe, U., Janser, K., Arnold, W., 1996, Vibrations of Free and Surfacecoupled aTomic Force Microscope Cantilevers: Theory and Experiment, Rev. of Sci. Instrum., 67:9 3281-3293. crossref(new window)