JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Quadruped Walking Control of DRC-HUBO
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Quadruped Walking Control of DRC-HUBO
Kim, Jung-Yup;
  PDF(new window)
 Abstract
In this paper, we describe the quadruped walking-control algorithm of the complete full-size humanoid DARPA Robotics Challenge-HUBO (DRC-HUBO) robot. Although DRC-HUBO is a biped robot, we require a quadruped walking function using two legs and two arms to overcome uneven terrains in the DRC. We design a wave-type quadruped walking pattern as a feedforward control using several walking parameters, and we design zero moment point (ZMP) controllers to maintain stable walking using an inverted pendulum model and an observed-state feedback control scheme. In particular, we propose a switching algorithm for ZMP controllers using supporting value and weighting factors in order to maintain the ZMP control performance during foot switching. Finally, we verify the proposed algorithm by performing quadruped walking experiments using DRC-HUBO.
 Keywords
DARPA Robotics challenge;DRC-HUBO;Quadruped walking;ZMP control;
 Language
Korean
 Cited by
 References
1.
Takanishi, A., Tochizawa, M., Karaki, H., Kato. I., 1989, Dynamic Biped Walking Stabilized with Optimal Trunk and Waist Motion, IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, 187-192.

2.
Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T., 1998, The Development of Honda Humanoid Robot, IEEE Int. Conf. on Robotics & Automation, 1321-1326.

3.
Park, I. W., Kim, J. Y, Lee, J. Oh, J. H., 2007, Mechanical Design of the Humanoid Robot Platform, HUBO, Advanced Robotics, 21:11 1305-1322. crossref(new window)

4.
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H., 2003, Biped Walking Pattern Generation by Using Preview Control of Zero-moment Point, IEEE Int. Conf. on Robotics & Automation, 1620-1626.

5.
Park, I. W., Kim, J. Y, Lee, J. Oh, J. H., 2008, Phase Plane Control of a Humanoid, IEEE-RAS Int. Conf. on Humanoid Robots, 145-150.

6.
Hyon, S. H., Cheng, G., 2006, Passivity-based Full-body Force Control for Humanoids and Application to Dynamic Balancing and Locomotion, IEEE/RSJ Int. Conf. on Intelligent Robots and Systemsb 4915-4922.

7.
Raibert, M., Blankespoor, K., Nelson, G., Playter, R., 2008, BigDog, the Rough-terrain Quadruped Robot, Proc. of the 17th World Congress the Int. Federation of Automatic Control, 10822-10825.

8.
Wooden, D., Malchano, M., Blankespoor, K., Howard, A., Rizzi, A. A., Raibert, M., 2010, Autonomous Navigation for BigDog, IEEE Int. Conf. on Robotics and Automation, 4736-4741.

9.
Seok, S., Wang, A., Chuah, M. Y., Otten, D., Lang, J., Kim, S., 2013, Design Principles for Highly Efficient Quadrupeds and Implementation on the MIT Cheetah Robot, IEEE Int. Conf. on Robotics and Automation, 3307-3312.

10.
Kim, J. Y., 2014, Experimental Realization of Quadruped Walking Using DRC HUBO, 29th ICROS Conference, 77-78.

11.
Kim, J. Y., 2015, viewed 15 August 2015, Quadruped Walking of DRC HUBO, .