Advanced SearchSearch Tips
First-principles Study on the Half-metallicity and Magnetism of the (001) Surfaces of (AlP)1/(CrP)1 Superlattice
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
First-principles Study on the Half-metallicity and Magnetism of the (001) Surfaces of (AlP)1/(CrP)1 Superlattice
Bialek, Beata; Lee, Jae Il;
  PDF(new window)
The half-metallicity and magnetism of the (001) surfaces of superlattice were investigated by means of FLAPW (Full-potential Liniarized Augmented Plane Wave) method. We considered four types of (001) surface termination, i.e., Al(S)-, Cr(S)-, P(S)Al(S-1)- and P(S)Cr(S-1)-term systems. We found that only Cr(S)-term system maintains the half-metallicity at the surface as only this system has the calculated magnetic moment of integer number of bohr magnetons. The magnetic moment of Cr(S) atom in the system was which was increased from the bulk value by the effects of band narrowing and increased spin-splitting at the surface. The electronic density of states of the P(S) atom in the P(S)Al(S-1)-term showed very sharp surface states due to the broken bonds at the surface. We found there is still a strong p-d hybridization between the P(S) and Cr(S-1) layers in the P(S)Cr(S-1)-term which causes a considerable increase of magnetic moment of P(S) atom.
superlattice;surface magnetism;half-metallicity;electronic structure calculation;
 Cited by
R. A. de Groot, F. M. Muller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983). crossref(new window)

I. Galanakis and P. H. Dederichs, Phys. Rev. B 66, 174429 (2002). crossref(new window)

S. P. Lewis, P. B. Allen, and T. Sasaka, Phys. Rev. B 55, 10253 (1997). crossref(new window)

Y. S. Dedkov, U. Rudiger, and G. Guntherrodt, Phys. Rev. B 65, 064417 (2002). crossref(new window)

H. Akinaga, T. Manago, and M. Shirai, Jap. J. Appl. Phys. 39, L1118 (2000). crossref(new window)

W. H. Xie, Y. Q. Xu, B. G. Liu, and D. G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003). crossref(new window)

I. Galanakis and P. Mavropoulos, Phys. Rev. B 67, 104417 (2003). crossref(new window)

K. Kusakabe, M. Geshi, H. Tsukamoto, and N. Suzuki, J. Phys.: Condens. Matter 16, 55639 (2004).

O. Volnianska, P. Jakubas, and P. Boguslawski, J. Alloys Compd. 423, 191 (2006). crossref(new window)

M. Sieberer, J. Redinger, S. Khmelevskyi, and P. Mohn, Phys. Rev. B 73, 024404 (2006). crossref(new window)

G. Y. Gao, K. L. Yao, E. Sasioglu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, Phys. Rev. B 75, 174442 (2005).

O. Volnianska and P. Boguslawski, Phys. Rev. B 75, 224418 (2007). crossref(new window)

E. Yan, Physica B 407, 879 (2012). crossref(new window)

X.-S. Song, S. Dong, and H. Zhao, Compu. Mater. Sci. 84, 306 (2014). crossref(new window)

M. Merabet, D. Rached, S. Benalia, A. H. Reshek, N. Bettahar, H. Righi, H. Baltache, F. Soyalp, and M. Labair, Superlattices and Microstructures 65, 195 (2014). crossref(new window)

E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) crossref(new window)

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). crossref(new window)

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). crossref(new window)

D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977). crossref(new window)

G. Rhaman, S. Cho, and S. C. Hong, J. Magn. Magn. Mater. 310, 2192 (2007). crossref(new window)