JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Magnetism of Pd(111) Thin Films: A First-principles Calculation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Magnetism of Pd(111) Thin Films: A First-principles Calculation
Hong, Soon Cheol;
  PDF(new window)
 Abstract
Pd has the highest magnetic susceptibility among single element metals and often shows ferromagnetism under some special environments. In this paper, we report magnetism of 5- and 9-monolayers (ML) calculated by using full-potential linearized augmented plane wave method. Exchange-correlation interaction is taken into account in local density approximation (LDA) and generalized gradient approximation (GGA) and calculational results in LDA and GGA are compared with each other. It is found that calculations by LDA are more reliable compared to those by GGA because LDA prediction of paramagnetism of bulk Pd is consistent with experiments, whereas GGA predicts wrongly ferromagnetim of bulk Pd. Calculational results in LDA on a 5-ML Pd(111) thin film shows a ferromagnetic ground state unlike a paramagnetic ground state of bulk Pd. The center Pd layer of the 5-ML Pd(111) thin film has the largest magnetic moment () among the layers and |m| = 1 orbital states play a dominant role in stabilizing the ferromagnetism of the 5-ML Pd(111) thin film. A 9-ML Pd(111) thin film in a ferromagnetic state has almost the same total energy as in a paramagnetic state. Since the magnetization of the 9-ML Pd(111) thin film is stable, the ferromagnetic state may be meta-stable.
 Keywords
first-principles calculation;ferromagnetism;thin film magnetism;itinerant magnetism;
 Language
Korean
 Cited by
 References
1.
O. Kwon and S. C. Hong, J. Korean Magn. Soc. 25, 101 (2015). crossref(new window)

2.
D. Odkhuu, S. H. Rhim, N. Park, K. Nakamura, and S. C. Hong, Phys. Rev. B 91, 014437 (2015). crossref(new window)

3.
Y. Sun, J. D. Burton, and E. Y. Tsymbal, Phys. Rev. B 81, 064413 (2010). crossref(new window)

4.
S. C. Hong, C. L. Fu, and A. J. Freeman, J. Appl. Phys. 63, 3655 (1988). crossref(new window)

5.
S. C. Hong and J. I. Lee, J. Korean Phys. Soc. 52, 1099 (2008). crossref(new window)

6.
V. L. Morruzi and P. M. Marcus, Phys. Rev. B 39, 471 (1989). crossref(new window)

7.
H. Chen, N. E. Brener, and J. Callaway, Phys. Rev. B 40, 1443 (1989). crossref(new window)

8.
A. Delin, E. Tosatti, and R. Weht, Phys. Rev. Lett. 92, 057201 (2004). crossref(new window)

9.
T. Shinohara, T. Sato, and T. Taniyama, Phys. Rev. Lett. 91, 197201 (2003). crossref(new window)

10.
L. Vitos, B. Johansson, and J. Kollar, Phys. Rev. B 62, R11957 (2000). crossref(new window)

11.
B. Sampedro, P. Crespo, A. Hernando, R. Litran, J. C. Sanchez Lopez, C. Lopez Cartes, A. Fernandez, J. Ramirez, J. Gonzalez Calbet, and M. Vallet, Phys. Rev. Lett. 91, 237203 (2003). crossref(new window)

12.
T. Taniyama, E. Otto, and T. Sato, Europhys. Lett. 38, 195 (1997). crossref(new window)

13.
S. H. Kim, J. Seo, T. H. Rho, S. C. Hong, H. G. Min, and J.-S. Kim, J. Korean Phys. Soc. 49, 1524 (2006).

14.
J. J. Lee, J. Korean Phys. Soc. 50, 1136 (2007). crossref(new window)

15.
C.-J. Yu, K. Han, E. Kim, S. Suh, Y. M. Lee, and J. Y. Kim, J. Korean Phys. Soc. 50, 1524 (2007). crossref(new window)

16.
S. C. Hong, J. I. Lee, and R.Wu, Phys. Rev. B 75, 172402 (2007). crossref(new window)

17.
S. Kim, S. Jekal, S.-H. Park, S. Lee, H. H. Lee, H.-K. Lee, S. H. Rhim, J.-H. Park, S. C. Hong, and J. Hong, to be published.

18.
D.-O. Kim, K. M. Song, Y. Choi, B.-C. Min, J.-S. Kim, J. W. Choi, and D. R. Lee, to be published.

19.
E. Wimmer H. Krakauer, M.Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).

20.
W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965). crossref(new window)

21.
L. Hedin and B. I. Lundqvist, J. Phys. C 4, 3107 (1977).

22.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). crossref(new window)