JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Annealing of Gas-atomized Fe-Si-Cr Powder
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Annealing of Gas-atomized Fe-Si-Cr Powder
Jang, Pyungwoo;
  PDF(new window)
 Abstract
Effects of annealing of the gas-atomized Fe-9%Si-2%Cr powder which is suitable for high frequency application in mobile devices because of its high electrical resistivity were studied with an emphasis on the order-disorder phase transition. The formation of B2 ordered phase could not be suppressed during atomization process. When the powder was annealed at a temperature higher than the peak diffracted from phase could be detected. With increasing annealing temperature lattice parameter and coercivity decreased. An interesting phenomenon was an abrupt increment of coercivity in the powder annealed at . Highest permeability could be shown in the powder annealed at a relative low temperature of and then the permeability decreased with annealing temperature. The above-mentioned results could be successfully explained by both the formation of ordered phases and the change of electrical resistivity of the Fe-Si-Cr powder which was also originated from the phase transition.
 Keywords
Fe-Si-Cr powder; phase;B2 phase;annealing;electrical resistivity;permeability;
 Language
Korean
 Cited by
 References
1.
F. Gonzalez and Y. Houbaert, Rev. Metal 49, 178 (2013). crossref(new window)

2.
O. Kubaschewski, Iron-binary Phase Diagrams, Springer-Verlag, Berlin (1982).

3.
A. I. Al-Sharif, M. Abu-Jafar, and A. Qteish, J. Phys.: Condens. Matter. 13, 2807 (2001).

4.
K. Hilfrich, W. Kolker, W. Petry, O. Scharpf, and E. Nembach, Scripta Metallurgica et Materialia 24, 39 (1990). crossref(new window)

5.
K. Narita and M. Enokizono, IEEE T. Magn. 15, 911 (1979). crossref(new window)

6.
B. Viala, J. Degauque, M. Fagot, M. Baricco, E. Ferrara, and F. Fiorillo, Mater. Sci. Eng. A 212, 62 (1996). crossref(new window)

7.
J. H. Yu, J. S. Shin, J. S. Bae, Z. H. Lee, T. D. Lee, and H. M. Lee, J. Korean Inst. Metals and Mater. 39, 394 (2001).

8.
J. S. Shin, J. S. Bae, H. J. Kim, H. M. Lee, T. D. Lee, E. J. Lavernia, and Z. H. Lee, Mater. Sci. Eng. A 407, 282 (2005). crossref(new window)

9.
Y. Liu, Z. Liu, S. Guo, Y. Du, B. Huang, J. Huang, S. Chen, and F. Liu, Intermetallics 13, 393 (2005). crossref(new window)

10.
D. Singh and S. Dangwal, J. Mater. Sci. 41, 3853 (2006). crossref(new window)

11.
H. J. Jung, Ph.D. Thesis, Hanyang University, Korea (2012).

12.
W. Ciurzynska, J. Zbroszczyk, J. Olszewski, J. Frackowiak, and K. Narita, J. Magn. Magn. Mater. 133, 351 (1994). crossref(new window)

13.
D. Bouchara, M. Fagot, J. Detauque, and J. Bras, J. Magn. Magn. Mater. 83, 377 (1990). crossref(new window)

14.
F. Faudot, J. F. Rialland, and J. Bigot, Physica Scripta 39, 263 (1989). crossref(new window)

15.
D. Ruiz, T. Ros-Yanez, L. Vandenbossche, L. Dupre, R. E. Vandenberghe, and Y. Houbaert, J. Magn. Magn. Mater. 290, 1423 (2005).