Advanced SearchSearch Tips
First-principles Study on the Magnetic Properties of Gd doped Bithmuth-Telluride
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
First-principles Study on the Magnetic Properties of Gd doped Bithmuth-Telluride
Van Quang, Tran; Kim, Miyoung;
  PDF(new window)
Determination of the structural, electronic, and magnetic properties of the magnetically doped bismuth-telluride alloys are drawing lots of interest in the fields of the thermoelectric application as well as the research on magnetic interaction and topological insulator. In this study, we performed the first-principles electronic structure calculations within the density functional theory for the Gd doped bismuth-tellurides in order to study its magnetic properties and magnetic phase stability. All-electron FLAPW (full-potential linearized augmented plane-wave) method is employed and the exchange correlation potentials of electrons are treated within the generalized gradient approximation. In order to describe the localized f-electrons of Gd properly, the Hubbard +U term and the spin-orbit coupling of the valence electrons are included in the second variational way. The results show that while the Gd bulk prefers a ferromagnetic phase, the total energy differences between the ferromagnetic and the antiferromagnetic phases of the Gd doped bismuth-telluride alloys are about ~1meV/Gd, indicating that the stable magnetic phase may be changed sensitively depending on the structural change such as defects or strains.
ferromagnetic;magnetic phase stability;thermoelectric;electronic structures calculation;spin-orbit coupling effect;magnetic doping;
 Cited by
H. Ohno, H. Munekata, T. Penney, S. von Molnar, and L. L. Chang, Phys. Rev. Lett. 68, 2664 (1992). crossref(new window)

Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Wilson, G. Spanos, and B. T. Jonker, Science 295, 651 (2002). crossref(new window)

G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008). crossref(new window)

D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, Science 287, 1024 (2000). crossref(new window)

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597 (2001). crossref(new window)

J. Moore, Nat. Phys. 5, 378 (2009). crossref(new window)

R. Yu, W. Zhang, H. Zhang, S. Zhang, X. Dai, and Z. Fang, Science 329, 61 (2010). crossref(new window)

Q. Liu, C. Liu, C. Xu, X. Qi, and S. Zhang, Phys. Rev. Lett. 102, 156603 (2009). crossref(new window)

Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 329, 659 (2010). crossref(new window)

J. Zhang, C. Z. Chang, P. Tang, Z. Zhang, X. Feng, K. Li, L. L. Wang, X. Chen, C. X. Liu, W. Duan, K. He, Q. K. Xue, X. C. Ma, and Y. Wang, Science 339, 1582 (2013). crossref(new window)

Y. S. Hor, P. Roushan, J. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B 81, 195203 (2010). crossref(new window)

H. J. Zhang, X. Zhang, and S. C. Zhang, arXiv:1108.4857v1 (2011).

Y. R. Song, F. Yang, M. Y. Yao, F. Zhu, L. Miao, J. P. Zu, M. X. Wang, H. Li, X. Yai, F. Ji, S. Qiao, Z. Sun, and G. B. Zhang, Appl. Phys. Lett. 100, 242403 (2012). crossref(new window)

S. Li, S. E. Harrison, Y. Huo, A. Phshp, H. T. Yuan, B. Zhou, A. J. Kellock, S. S. P. Parkin, Y.-L. Chen, T. Hesjedal, and J. S. Harris, Appl. Phys. Lett. 102, 242412 (2013). crossref(new window)

J. Kim, K. Lee, T. Takabatake, H. Kim, M. Kim, and M. Jung, Sci. Rep. 5, 10309 (2015). crossref(new window)

T. V. Quang and M. Kim, J. Appl. Phys. 113, 17A934 (2013).

E. Wimmer, K. Krakauer, M. Wienert, and A. J. Freeman, Phys. Rev B 24, 864 (1981).

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). crossref(new window)

A. B. Schick, A. I. Liechtenstein, and W. E. Pickett, Phys. Rev. B 60, 10763 (1999). crossref(new window)

S. Abdeloushed, N. Baadji, and M. Alouani, Phys. Rev. B 75, 094428 (2007). crossref(new window)

D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977). crossref(new window)

M. Kim, A. J. Freeman, and C. B. Geller, Phys. Rev. B 72, 035205 (2005). crossref(new window)

A. Adam, Materials Research Bulletin 42, 1986 (2007). crossref(new window)

C. G. Duan, R. F. Sabiryanov, J. Liu, W. N. Mei, P. A. Dowben, and J. R. Hardy, Phys. Rev. Lett. 94, 237201 (2005). crossref(new window)

K. Maiti, M. C. Malagoli, E. Magnano, A. Dallmeyer, and C. Carbone, Phys. Rev. Lett. 86, 2846 (2001). crossref(new window)

M. Kim and A. J. Freeman, Appl. Phys. Lett. 85, 4983 (2004). crossref(new window)