Development of the Design Algorithm Using the Equivalent Magnetic Circuit Method for Colenoid Type Electromagnetic Linear Actuator

- Journal title : Journal of the Korean Magnetics Society
- Volume 26, Issue 2, 2016, pp.55-61
- Publisher : The Korean Magnetics Society
- DOI : 10.4283/JKMS.2016.26.2.055

Title & Authors

Development of the Design Algorithm Using the Equivalent Magnetic Circuit Method for Colenoid Type Electromagnetic Linear Actuator

Han, Dong-Ki; Chang, Jung-Hwan;

Han, Dong-Ki; Chang, Jung-Hwan;

Abstract

This study proposes the design algorithm of an electromagnetic linear actuator with a divided coil excitation system, such as the colenoid (COL) system, using the equivalent magnetic circuit (EMC) method. Nowadays, the clamping device is used to hold workpiece in the electrically driven chucking system and is needed to produce a huge clamping force of 40 kN like hydraulic system. The design algorithm for electromagnetic linear actuator can be obtained using the EMC method. At first, the parameter map is used to decide the slot width ratio in the initial design. Next, to make the magnetic flux density uniform at each pole, the pole width is adjusted by the pole width adjusting algorithm with EMC. When the dimensions of the electromagnetic linear actuator are decided, the clamping force is calculated to check the desired clamping force. The design results show that it can be used to hold a workpiece firmly instead of using a hydraulic cylinder in a chucking system.

Keywords

colenoid;electromagnetic linear actuator;equivalent magnetic circuit;electrically driven chucking system;

Language

Korean

References

1.

J. H. Chang and Y. S. Yoon, Korea Patent 1015826300000 (2015).

2.

H. Mutai and K. Yamasawa, IEEE Trans. Magn. 31, 2245 (1995).

4.

C. Espanet, Ph.D. Thesis, Franche-Comte University, France (1999).

8.

T. W. Kim and J. H. Chang, Int. Conf. ICEMS 1461 (2013).

9.

D. K. Han and J. H. Chang, IEEE Trans. Magn. 52, 7002104 (2015).