JOURNAL BROWSE
Search
Advanced SearchSearch Tips
First-principles Calculations on Magnetism of 1H/1T Boundary in Monolayer MoS2
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
First-principles Calculations on Magnetism of 1H/1T Boundary in Monolayer MoS2
Jekal, Soyoung; Hong, Soon Cheol;
  PDF(new window)
 Abstract
Monolayer is energetically most stable when it has a 1H phase, but 1H to 1T phase transition () is easily realized by various ways. Even though magnetic moment is not observed during , is obtained in local 1T phase; 75% 2H and 25% 1T phases are mixed in () supercell. Most magnetic moment is originated from the 1T phase Mo atom in the supercell, while the magnetic moments of other atoms are negligible. As a result, magnetic/non-magnetic boundary is created in the monolayered . Our result suggests that can be applied for spintronics such as a spin transistor.
 Keywords
first principles calculation;2D material;electronic structure;spitronics;
 Language
Korean
 Cited by
 References
1.
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011). crossref(new window)

2.
W. S. Yun and J. D Lee, J. Phys. Chem. C 119, 2822 (2015). crossref(new window)

3.
K. Lee, W. S. Yun, and J. D. Lee, Phys. Rev. B 91, 125420 (2015). crossref(new window)

4.
S. Lebegue and O. Eriksson, Phys. Rev. B 79, 115409 (2009). crossref(new window)

5.
W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Phys. Rev. B 85, 033305 (2012). crossref(new window)

6.
H. Li, J. Wu, X. Huang, Z. Yin, J. Liu, and H. Zhang, ACS Nano 8, 6563 (2014). crossref(new window)

7.
S. W. Han, H. Kwon, S. K. Kim, S. Ryu, W. S. Yun, D. H. Kim, J. H. Hwang, J.-S. Kang, J. Baik, H. J. Shin, and S. C. Hong, Phys. Rev. B 84, 045409 (2010).

8.
S. W. Han, Y. H. Hwang, S.-H. Kim, W. S. Yun, J. D. Lee, M. G. Park, S. Ryu, J. S. Park, D.-H. Yoo, S.-P. Yoon, S. C. Hong, K. S. Kim, and Y. S. Park, Phys. Rev. Lett. 110, 247201 (2013). crossref(new window)

9.
Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008). crossref(new window)

10.
H. Pan and Y. W. Zhang, J. Mater. Chem. 22, 7280 (2012). crossref(new window)

11.
S. Tongay, S. S. Varnoosfaderani, B. R. Appleton, J. Wu, and A. F. Hebard, Appl. Phys. Lett. 101, 123105 (2012). crossref(new window)

12.
H. Pan and Y. W. Zhang, J. Phys. Chem. C 116, 11752 (2012). crossref(new window)

13.
S. Cristol, J. F. Paul, E. Payen, D. Bougeard, S. Clemendot, and F. Hutschka, J. Phys. Chem. B 106, 5659 (2002). crossref(new window)

14.
Q. Yue, Z. Shao, S. Chang, and J. Li, Nanoscale Res. Lett. 8, 1 (2013). crossref(new window)

15.
N. M. Galea, E. S. Kadantsev, and T. Ziegler, J. Phys. Chem. C 113, 193 (2008).

16.
Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Nat. Nanotechnol. 9, 391 (2014). crossref(new window)

17.
G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). crossref(new window)

18.
G. Kresse and J. Furthmuller, Comput. Mater. Sci. 5, 15 (1996).

19.
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

20.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). crossref(new window)

21.
P. E. Blochl, Phys. Rev. B 50, 17953 (1994). crossref(new window)

22.
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). crossref(new window)

23.
P. Maragakis, S. A. Andreev, Y. Brumer, D. R. Reichman, and E. Kaxiras, J. Chem. Phys. 117, 4651 (2002). crossref(new window)

24.
Q. Tang and D. E. Jiang, Chem. Mater. 27, 3743 (2015). crossref(new window)

25.
S. Mathew, K. Gopinadhan, T. K. Chan, X. J. Yu, D. Zhan, L. Cao, A. Rusydi, M. B. H. Breese, S. Dhar, Z. X. Shen, T. Venkatesan, and John T. L. Thong, Appl. Phys. Lett. 101, 102103 (2012). crossref(new window)