Advanced SearchSearch Tips
Influence of Layer-thickness and Annealing on Magnetic Properties of CoSiB/Pd Multilayer with Perpendicular Magnetic Anisotropy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Influence of Layer-thickness and Annealing on Magnetic Properties of CoSiB/Pd Multilayer with Perpendicular Magnetic Anisotropy
Jung, Sol; Yim, Haein;
  PDF(new window)
CoSiB is the amorphous ferromagnetic material and multilayer consisting of CoSiB and Pd has perpendicular magnetic anisotropic property. PMA has strong advantages for STT-MRAM. Moreover, amorphous materials have two advantages more than crystalline materials: no grain boundary and good thermal stability. Therefore, we studied the magnetic properties of multilayers consisting of the with PMA. In this study, we investigated the magnetic property of the [CoSiB (3, 4, 5, and 6) /Pd(11, 13, 15, 17, 19,and multilayers and found the annealing temperature dependence of the magnetic property. The annealing temperature range is from room temperature to . The coercivity and the saturation magnetization of the CoSiB/Pd multilayer system have a close association with the annealing temperature. Moreover, the coercivity especially shows a sudden increasing at the specific annealing temperature.
amorphous CoSiB;CoSiB/Pd;multilayer;perpendicular magnetic anisotropy;
 Cited by
S.-I. Iwasaki and K. Takemura, IEEE Trans. Magn. 11, 1173 (1975). crossref(new window)

P. F. Carcia, A. D. Meinhaldt, and A. Sunna, Appl. Phys. Lett. 47, 178 (1985). crossref(new window)

N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okant, Y. Sekiguchi, and Y. Osada, J. Appl. Phys. 91, 5246 (2002). crossref(new window)

F. J. A. den Broeder, D. Kuiper, A. P. van de Mosselaer, and W. Hoving, Phys. Rev. Lett. 60, 2769 (1988). crossref(new window)

J. F. Weaver, A. F. Carlsson, and F. J. Madix, Surf. Sci. Rep. 50, 107 (2003). crossref(new window)

G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B 50, 9989 (1994). crossref(new window)

J. Z. Sun, Phys. Rev. B 62, 570 (2000). crossref(new window)

F. J. Albert, N. C. Emley, E. B. Myers, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 89, 226802 (2002). crossref(new window)

K. Yagami, A. A. Tulapurkar, A. Fukushima, and Y. Suzuki, Appl. Phys. Lett. 85, 5634 (2002).

H.-J. Suh and K.-J. Lee, Curr. Appl. Phys. 9, 985 (2009). crossref(new window)

R. Sbiaa, S. Y. H. Lua, R. Law, H. Meng, R. Lye, and H. K. Tan, J. Appl. Phys. 190, 07C707 (2011).

J. Y. Park and H. I. Choi-Yim, IEEE Tran. Magn. 45, 2413 (2009). crossref(new window)

S. Jung, J. B. Yoon, and H. I. Yim, J. Korean Phys. Soc. 62, L10 (2013). crossref(new window)

J. B. Yoon, S. Jung, Y. H. Choi, J. H. Cho, M. H. Jung, H. I. Yim, and C. Y. Yon, J. Appl. Phys. 113, 17A342 (2013).

S. Jung and H. I. Yim, J. Nanosci. Nanotechnol. 15, 8336 (2015). crossref(new window)