Advanced SearchSearch Tips
Effect of Processing Parameters on the Formation of Large Area Self-Assembled Monolayer of Polystyrene Beads by a Convective Self-Assembly Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Journal of Materials Research
  • Volume 25, Issue 12,  2015, pp.647-654
  • Publisher : The Materials Research Society of Korea
  • DOI : 10.3740/MRSK.2015.25.12.647
 Title & Authors
Effect of Processing Parameters on the Formation of Large Area Self-Assembled Monolayer of Polystyrene Beads by a Convective Self-Assembly Method
Seo, Ahn-na; Choi, Ji-Hwan; Pyun, Jae-chul; Kim, Won Mok; Kim, Inho; Lee, Kyeong-Seok;
  PDF(new window)
Self-assembled monolayers(SAM) of microspheres such as silica and polystyrene(PS) beads have found widespread application in photonic crystals, sensors, and lithographic masks or templates. From a practical viewpoint, setting up a high-throughput process to form a SAM over large areas in a controllable manner is a key challenging issue. Various methods have been suggested including drop casting, spin coating, Langmuir Blodgett, and convective self-assembly(CSA) techniques. Among these, the CSA method has recently attracted attention due to its potential scalability to an automated high-throughput process. By controlling various parameters, this process can be precisely tuned to achieve well-ordered arrays of microspheres. In this study, using a restricted meniscus CSA method, we systematically investigate the effect of the processing parameters on the formation of large area self-assembled monolayers of PS beads. A way to provide hydrophilicity, a prerequisite for a CSA, to the surface of a hydrophobic photoresist layer, is presented in order to apply the SAM of the PS beads as a mask for photonic nanojet lithography.
convective self-assembly method;polystyrene bead;large area monolayer;high-throughput process;
 Cited by
Y. A. Vlasov, X.-Z. Bo, J. C. Sturn and D. J. Norris, Nature, 414, 289 (2001). crossref(new window)

J. D. Joannoupolous, R. D. Meade and J. N. Winn, Photonic Crystals, Princeton University Press, New Jersey, (1995).

I. I. Tarhan and G. H. Watson, Phys. Rev. Lett., 76, 315 (1996). crossref(new window)

H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J. S. Moya, J. Requena, A. Mifsud and V. Fornes, Adv. Mater., 10, 480 (1998). crossref(new window)

S. H. Park and Y. N. Xia, Langmuir, 15, 266 (1999). crossref(new window)

R. J. Spry and D. J. Kosan, Appl. Spectrosc., 40, 782 (1986). crossref(new window)

I. Willner and B. Willner, Pure Appl. Chem., 74, 1773 (2002). crossref(new window)

J. H. Holtz and S. A. Asher, Nature, 389, 829 (1997). crossref(new window)

C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B, 105, 5599 (2001). crossref(new window)

A. D. Ormonde, E. C. M. Hicks, J. Castillo and R. P. V. Duyne, Langmuir, 20, 6927 (2004). crossref(new window)

N. H. Finkel, B. G. Prevo, O. D. Velev and L. He, Anal. Chem., 77, 1088 (2005). crossref(new window)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, Science, 297, 820 (2002). crossref(new window)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron and T. W. Ebbesen, Phys. Rev. Lett., 90, 167401 (2003). crossref(new window)

R. Mayoral, J. Requena, J. S. Moya, C. Lopez, A. Cintas, H. Miguez, F. Meseguer, L. Vazquez, M. Holgado and A. Blanco, Adv. Mater., 9, 257 (1997). crossref(new window)

Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov and M. F. Limonov, Phys. Rev. E, 61, 5784 (2000). crossref(new window)

J. E. G. J. Wijnhoven and W. L. Vos, Science, 281, 802 (1998). crossref(new window)

M. Muller, R. Zentel, T. Maka, S. G. Romanov and C. M. Sotomayor Torres, Adv. Mater., 12, 1499 (2000). crossref(new window)

J. C. Hulteen and R. P. Vanduyne, J. Vac. Sci. Technol. A, 13, 1553 (1995). crossref(new window)

F. Burmeister, C. Schafle, B. Keilhofer, C. Bechinger, J. Boneberg and P. Leiderer, Adv. Mater., 10, 495 (1998). crossref(new window)

R. Micheletto, H. Fukuda and M. Ohtsu, Langmuir, 11, 3333 (1995). crossref(new window)

H. W. Deckman and J. H. Dunsmuir, Appl. Phys. Lett., 41, 377 (1982). crossref(new window)

A. Doron, E. Katz and I. Willner, Langmuir, 11, 1313 (1995). crossref(new window)

M. Gao, X. Zhang, B. Yang and J. Shen, J. Chem. Soc. Chem. Commun., 19, 2229 (1994).

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayama, Langmuir, 8, 3183 (1992). crossref(new window)

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayama, Nature, 361, 26 (1993).

W. Wu, A. Katsnelson, O. G. Memis and H. Mohseni, Nanotechnology, 18, 485302 (2007). crossref(new window)

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee and K.- S. Lee, Appl. Phys. Exp., 5, 025201 (2012). crossref(new window)

K. Chen, S. V. Stoianov, J. Bangerter and H. D. J. Robinson, J. Colloid Interface Sci., 344, 315 (2010). crossref(new window)

A. S. Dimitrov and K. Nagayama, Langmuir, 12, 1303 (1996). crossref(new window)

B. G. Prevo and O. D. Velev, Langmuir, 20, 2099 (2004). crossref(new window)

P. Kumnorkaew, Y. Ee, N. Tansu and J. F. Gilchrist, Langmuir, 24, 12150 (2008). crossref(new window)

X.-Z. Zhang, A. V. Whitney, J. Zhao, E. N. Hicks and R. P. Van Duyne, J. Nanosci. Nanotechnol., 6, 1 (2006).