JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Additives on the Characteristics of Amorphous Nano Boron Powder Fabricated by Self-Propagating High Temperature Synthesis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Journal of Materials Research
  • Volume 25, Issue 12,  2015, pp.659-665
  • Publisher : The Materials Research Society of Korea
  • DOI : 10.3740/MRSK.2015.25.12.659
 Title & Authors
Effect of Additives on the Characteristics of Amorphous Nano Boron Powder Fabricated by Self-Propagating High Temperature Synthesis
Joo, Sin Hyong; Nersisyan, Hayk H.; Lee, Tae Hyuk; Cho, Young Hee; Kim, Hong Moule; Lee, Huk Hee; Lee, Jong Hyeon;
  PDF(new window)
 Abstract
The self-propagating high temperature synthesis approach was applied to synthesize amorphous boron nano-powders in argon atmospheres. For this purpose, we investigated the characteristics of a thermally induced combustion wave in the system(${\alpha}
 Keywords
amorphous boron;SHS;microstructure;nano powder;
 Language
Korean
 Cited by
 References
1.
X. Hui, K. Kumar, C. J. Sung, T. Edwards and D. Gardner, Fuel, 98, 176 (2012). crossref(new window)

2.
G. R. Wilson, T. Edwards, E. Corporan and R. L. Freerks, Energy Fuels, 27, 962 (2013). crossref(new window)

3.
M. G. Sibi, B. Singh, R. Kumar, C. Pendem and A. K. Sinha, Green Chem., 14, 976 (2012). crossref(new window)

4.
L. Wang, J. J. Zou, X. Zhang and L. Wang, Fuel, 91, 164 (2012). crossref(new window)

5.
B. Van Devener, J. P. L. Perez, J. Jankovich and S. L. Anderson, Energy Fuels, 23, 6111 (2009). crossref(new window)

6.
W. Q. Pang, X. Z. Fan, W. Zhang, H. X. Xu, J. Z. Li, Y. H. Li, X. B. Shi and Y. Li, Propellants Explos. Pyrotech., 36, 360 (2011). crossref(new window)

7.
S. Mohan, M. A. Trunov, E. L. Dreizin, J. Propul. Power, 24, 199 (2008). crossref(new window)

8.
R. A. Yetter, G. A. Risha and S. F. Son, Proc. Combust. Inst., 32, 1819 (2009). crossref(new window)

9.
A. Gany, Defense Sci. J., 56, 321 (2006). crossref(new window)

10.
A. Ulas, K. K. Kuo and C. Gotzmer, Combust. Flame, 127, 1935 (2001). crossref(new window)

11.
S. Karmakar, N. Wang, S. Acharya and K. M. Dooley, Combust. Flame, 160, 3004 (2013). crossref(new window)

12.
P. Z. Si, M. Zhang, C. Y. You, D. Y. Geng, J. H. Du, X. G. Zhao, X. L. Ma and Z. D. Zhang, J. Mater. Sci., 38, 689 (2003). crossref(new window)

13.
B. J. Bellott, W. Noh, R. G. Nuzzo and G. S. Girolami, Chem. Commun., 22, 3214 (2009).

14.
J. V. Marzik, R. J. Suplinskas, R. H. T. Wilke, P. C. Canfield, D. K. Finnemore, M. Rindfleisch, J. Margolies and S. T. Hannahs, Physica C, 423, 83 (2005). crossref(new window)

15.
A. L. Pickering, C. Mitterbauer, N. D. Browning, S. M. Kauzlarich and P. P. Power, Chem. Commun., 6, 580 (2007).

16.
B. Van Devener, J. P. L. Perez, J. Jankovich and S. L. Anderson, Energy Fuels, 23, 6111 (2009). crossref(new window)

17.
M. Vignolo, G. Bovone, D. Matera, D. Nardelli, C. Bernini and A. Sergio Siri, Chem. Eng. J. 256, 32 (2014). crossref(new window)

18.
C. Y. Shin, K. S. Yun, Y. C. Park, H. H. Nersisyan and C. W. Won, J. Korean Ceram. Soc., 42, 22 (2005). crossref(new window)

19.
X. Y. Liu, X. D. Zhao, W. M. Hou and W. H. Su, J. Alloys Compd., 223, L7 (1995). crossref(new window)

20.
V. Adasch, K. W. Hess, T. Ludwig, N. Vojteer and H. Hillebrecht, J. Solid State Chem., 179, 2916 (2006). crossref(new window)

21.
H. Lorenz and I. Orgzall, Scripta Mater., 52, 537 (2005). crossref(new window)