Advanced SearchSearch Tips
Co-Embedded Graphitic Porous Carbon Nanofibers for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Journal of Materials Research
  • Volume 25, Issue 12,  2015, pp.672-677
  • Publisher : The Materials Research Society of Korea
  • DOI : 10.3740/MRSK.2015.25.12.672
 Title & Authors
Co-Embedded Graphitic Porous Carbon Nanofibers for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells
An, Hye Lan; Kang, Hye-Rhin; Sun, Hyo Jeong; Han, Ji Ho; Ahn, Hyo-Jin;
  PDF(new window)
Co-embedded graphitic porous carbon nanofibers(Co-GPCNFs) are synthesized by using an electrospinning method. Their morphological, structural, electrochemical, and photovoltaic properties are investigated. To obtain the optimum condition of Co-GPCNFs for dye-sensitized solar cells(DSSCs), the amount of cobalt precursor in an electrospinning solutuion are controlled to be 0 wt%(conventional CNFs), 1 wt%(sample A), and 3 wt%(sample B). Among them, sample B exhibited a high degree of graphitization and porous structure compared to conventional CNFs and sample A, which result in the performance improvement of DSSCs. Therefore, sample B showed a high current density(JSC, ) and excellent power conversion efficiency(PCE, 5.33 %) than those of conventional CNFs(, 3.78 %). This result can be explained by combined effects of the increased contact area between the electrode and elecytolyte caused by improved porosity and the increased conductivity caused by the formation of a high degree of graphitization. Thus, the Co-GPCNFs may be used as a promising alternative of Pt-free counter electrode in DSSCs.
dye-sensitized solar cells;counter electrode;Pt-free;graphitic porous carbon nanofibers;catalytic properties;
 Cited by
M. Gratzel, Nature, 414, 338 (2001). crossref(new window)

J-Y. Lin, J-H. Lian and T-C. Wei, Electrochem. Solid State Lett., 14, D41 (2011). crossref(new window)

D. Sebastian, V. Baglio, M. Girolamo, R. Moliner, M. J. Lazaro and A. S. Arico, J. Power Sourc., 250, 242 (2014). crossref(new window)

T. Battumur, S. H. Mujawar, Q. T. Truong, S. B. Ambade, D. S. Lee, W. J. Lee, S-H. Han and S-H. Lee, Curr. Appl. Phys., 12, e49 (2012). crossref(new window)

H-J. Shin, S. S. Jeon and S. S. Im, Synth. Met., 161, 1284 (2011). crossref(new window)

S. B. Yoon, G. S. Chai, S. K. Kang, J-S. Yu, K. P. Gierszal and M. Jaroniec, J. Am. Chem. Soc., 127, 4188 (2005). crossref(new window)

M. N. Patel, X. Wang, D. A. Slanac, D. A. Ferrer, S. Dai, K. P. Johnston and K. J. Stevenson, J. Mater. Chem., 22, 3160 (2012). crossref(new window)

O. P. Krivoruchko, N. I. Maksimova, V. I. Zaikovskii and A. N. Salanov, Carbon, 38, 1075 (2000). crossref(new window)

M. Sevilla and A. B. Fuertes, Carbon, 44, 468 (2006). crossref(new window)

H. L. An, G-H. An and H-J Ahn, J. Alloys Compd., 645, 317 (2015). crossref(new window)

Y-J. Lee, B-R. Koo and H-J. Ahn, J. Korean Powder Metall. Inst., 21, 360 (2014). crossref(new window)

H-I. Joh, H. K. Song, K-B. Yi and S. H. Lee, Carbon, 53, 399 (2013). crossref(new window)

Y. Aykut, ACS Appl. Mater. Interfaces, 4, 3405 (2012). crossref(new window)

Y. Xiao, G. Han, H. Zhou, Y. Li and J-Y. Lin, Electrochim. Acta, 155, 103 (2015). crossref(new window)

P. Li, J. Wu, J. Lin, M. Huang, Y. Huang and Q. Li, Sol. Energy, 83, 845 (2009). crossref(new window)

F. Gong, H. Wang, X. Xu, G. Zhou and Z-S. Wang, J. Am. Chem. Soc., 134, 10953 (2012). crossref(new window)

J. Gong, J. Liang and K. Sumathy, Renew. Sustain. Energy Rev., 16, 5848 (2012). crossref(new window)

M. Gratzel, Inorg. Chem., 44, 6841 (2005). crossref(new window)

J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, J. Power Sources, 181, 172 (2008). crossref(new window)

H-R. An and H-J. Ahn, Korean J. Mater. Res., 24, 565 (2014). crossref(new window)