JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fatigue Crack-Tip Stress Mapping Using Neutron Diffraction
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Journal of Materials Research
  • Volume 25, Issue 12,  2015, pp.690-693
  • Publisher : The Materials Research Society of Korea
  • DOI : 10.3740/MRSK.2015.25.12.690
 Title & Authors
Fatigue Crack-Tip Stress Mapping Using Neutron Diffraction
Choi, Gyudong; Lee, Min-Ho; Huang, E-Wen; Woo, Wanchuck; Lee, Soo Yeol;
  PDF(new window)
 Abstract
Fatigue crack growth experiments were carried out on a 304 L stainless steel compact-tension(CT) specimen under load control mode. Neutron diffraction was employed to quantitatively measure the residual strains/stresses and the evolution of stress fields in the vicinity of a propagating fatigue-crack tip. Three principal stress components (i.e. crack growth, crack opening, and through-thickness direction stresses) were examined in-situ under loading as a function of distance from the crack tip along the crack-propagation path. The stress/strain fields, measured both at the mid-thickness and near the surface of the CT specimen, were compared. The results show that much higher compressive residual stress fields developed in front of the crack tip near the surface than developed at the mid-thickness area. The change of the stresses ahead of the crack tip under loading is more significant at the mid-thickness area than it is near the surface.
 Keywords
fatigue;crack growth;stress field;stainless steel;neutron diffraction;
 Language
English
 Cited by
 References
1.
S. Suresh, Fatigue of Materials, 2nd ed., Cambridge University Press, New York (1998).

2.
P. J. Withers, Rep. Prog. Phys., 70, 2211 (2007). crossref(new window)

3.
J. D. Almer, J. B. Cohen and R. A. Winholtz, Metall. Mater. Trans. A, 29, 2127 (1998). crossref(new window)

4.
J. E. Allison, Fracture mechanics, STP 677, Philadelphia, PA: ASTM, 550 (1979).

5.
M. N. James, D. G. Hattingh, D. J. Hughes, L. W. Wei, E. A. Patterson and J. Q. Da Fonseca, Fatigue Fract. Eng. Mater. Struct., 27, 609 (2004). crossref(new window)

6.
M. C. Croft, N. M. Jisrawi, Z. Zhong, R. L. Holtz, K. Sadananda, J. R. Skaritka and T. Tsakalakos, Int. J. Fatigue, 29, 1726 (2007). crossref(new window)

7.
A. Steuwer, M. Rahman, A. Shterenlikht, M. E. Fitzpatrick, L. Edwards and P. J. Withers, Acta Mater., 58, 4039 (2010). crossref(new window)

8.
A. J. Allen, M. T. Hutchings, C. G. Windsor and C. Andreani, Adv. Phys., 34, 445 (1985). crossref(new window)

9.
M. T. Hutchings, C. A. Hippsley and V. Rainey, Mater. Res. Soc. Sympos. Proc., 166, 317 (1990).

10.
S. Y. Lee, R. I. Barabash, J. S. Chung, P. K. Liaw, H. Choo, Y. Sun, C. Fan, L. Li, D. W. Brown and G. E. Ice, Metall. Mater. Trans. A, 39, 3164 (2008). crossref(new window)

11.
S. Y. Lee, H. Choo, P. K. Liaw, E. C. Oliver and A. M. Paradowska, Scripta Mater., 60, 866 (2009). crossref(new window)

12.
S. Y. Lee, P. K. Liaw, H. Choo and R. B. Rogge, Acta Mater., 59, 485 (2011). crossref(new window)

13.
S. Y. Lee, H. Choo, P. K. Liaw, K. An and C. R. Hubbard, Acta Mater., 59, 495 (2011). crossref(new window)

14.
S. Y. Lee, E. W. Huang, W. Wu, P. K. Liaw and A. M. Paradowska, Mater. Charact., 79, 7 (2013). crossref(new window)