Advanced SearchSearch Tips
High Temperature Stability of Nitride Ceramic Materials in LiF-NdF3-Nd2O3 Molten Salts System
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Journal of Materials Research
  • Volume 25, Issue 12,  2015, pp.694-702
  • Publisher : The Materials Research Society of Korea
  • DOI : 10.3740/MRSK.2015.25.12.694
 Title & Authors
High Temperature Stability of Nitride Ceramic Materials in LiF-NdF3-Nd2O3 Molten Salts System
Kwon, Sukcheol; Lee, Young-Jun; Ryu, Hong-Youl; Lee, Go Gi; Jo, Sung Koo; Lee, Jong-Hyeon;
  PDF(new window)
Nd-Fe-B permanent magnets have been used in a wide variety of applications because of their high magnetic flux density. So, demand for neodymium has been increasing in worldwide. In this study, an electrowinning process was performed in high temperature molten salts. However, a corrosion resistant material for use in the molten salt must be found for stable operation because of the harsh corrosion environment of the electrowinning process. Therefore, for this paper, boron nitride(BN), aluminum nitride(AlN), and silicon nitride() were selected as protective and structural materials in the high temperature electrolyte. To investigate the characteristics of BN, AlN, and , in molten salts, materials were immersed in the molten salts for 24, 72, 120, and 192 hours. Also, surface condition and stability were investigated by SEM and EDS and corrosion products were calculated by HSC chemistry. As a result, among BN, AlN, and , AlN was found to show the best protective material properties.
nitride ceramic materials;neodymium;electrowinning;protective material;
 Cited by
G. J. Kipouros and R. A. Sharma, J. Electrochem. Soc., 137, 3333 (1990). crossref(new window)

E. Stefanidaki, C. Hasiotis and C. Kontoyannis, Electrochim. Acta, 46, 2665 (2001). crossref(new window)

H. Y. Ryu, J. H. Lee, W. G. Kim, H. H. Nersisyan, G. G. Lee, S. K. Jo, H. H. Lee and I. S. Hwang, Rare Met., 34, 111 (2015). crossref(new window)

S. H. Cho, S. S. Hong, D. S. Kang, M. S. Jeong, B. H. Park, J. M. Hur and H. S. Lee, J. Korean Radioact. Waste Soc., 8, 33 (2010).

M. A. Uusitalo, P. M. J. Vuoristo and T. A.Mantyla, Corros. Sci., 46, 1311, (2004). crossref(new window)

R. A. Rapp, Corros. Sci., 44, 209 (2002). crossref(new window)

J. G. Gonzalez-Rodriguez, S. Haro, A. Martinez-Villafane, V. M. Salinas-Bravo and J. Porcayo-Calderon, Mater. Sci. Eng. A, 435-436, 258 (2006). crossref(new window)

M. Spiegel, P. Biedenkopf and H. J. Grabke, Corros. Sci., 39, 1193 (1997). crossref(new window)

B. Zhu and G. Lindbergh, Electrochim. Acta, 46, 2593 (2001). crossref(new window)

B. P. Mohanty and D. A. Shores, Corros. Sci., 46, 2893 (2004). crossref(new window)

A. Ruh and M. Spiegel, Corros. Sci., 48, 679 (2006). crossref(new window)

J. E. Indacochea, J. L. Smith, K. R. Litko, E. J. Karell and A. G. Raraz, Oxid. Met., 55, 1 (2001). crossref(new window)

J. Eichler and C. Lesniak, J. Eur. Ceram. Soc., 28, 1105 (2008). crossref(new window)

Hugh O. Pierson, Handbook of refractory carbides and nitrides ; properties, characteristics, processing, and applications, Noyes publications, pp. 238-241 (1996).

W. S. So and K. H. Baik, Korean J. Mater. Res., 21, 106 (2011). crossref(new window)

A. Roine, HSC Chemistry 6.1, Outotkumpu Research Oy, Pori, Finland (2006).

S. H. Cho, J. H. Lim, J. H. Chung, J. M. Hur, C. S. Seo and S. W. Park, J. Korean Ind. Eng. Chem., 15, 913 (2004).

J. A. Dean, Lange's handbook of chemistry, p. 329-341, McGRAW-HILL, INC., New York, (1999).

V. L. Cherginets, V. N. Baumer, S. S. Galkin, L. V. Glushkova, T. P. Rebrova and Z. V. Shtitelman, Inorg. Chem., 45, 7367 (2006). crossref(new window)

X. Li, L. Zhang and X. Yin, Ceram. Int., 39, 3035 (2013). crossref(new window)

Y. P. Zaikov, A. A. Redkin, A. A. Apisarov, I. V. Korzun, N. P. Kulik, A. V. Isakov, A. A. Kataev and O. V. Chemezov, J. Chem. Eng. Data, 58, 932 (2013). crossref(new window)