JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of the Annealing Conditions on the Ferromagnetic Resonance of YIG Thin Film Prepared on GGG Substrate
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Journal of Materials Research
  • Volume 25, Issue 12,  2015, pp.703-707
  • Publisher : The Materials Research Society of Korea
  • DOI : 10.3740/MRSK.2015.25.12.703
 Title & Authors
Effect of the Annealing Conditions on the Ferromagnetic Resonance of YIG Thin Film Prepared on GGG Substrate
Lee, Yelim; Phuoc, Cao Van; Park, Seung-Young; Jeong, Jong-Ryul;
  PDF(new window)
 Abstract
In this study, we investigated the effect of annealing conditions on the ferromagnetic resonance(FMR) of yttrium iron garnet (, YIG) thin film prepared on gadolinium gallium garnet (, GGG) substrate. The YIG thin films were grown by rf magnetron sputtering at room temperature and were annealed at various temperatures from 700 to . FMR characteristics of the YIG thin films were investigated with a coplanar waveguide FMR measurement system in a frequency range from 5 to 20 GHz. X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to characterize the phase formation, crystal structure and composition of the YIG thin films. Field dependent magnetization curves at room temperature were obtained by using a vibrating sample magnetometer(VSM). The FMR measurements revealed that the resonance magnetic field was highly dependent on the annealing condition: the lowest FMR linewidth can be observed for the annealed sample, which agrees with the VSM results. We also found that the Fe and O composition changes during the annealing process play important roles in the observed magnetic properties.
 Keywords
YIG;ferromagnetic resonance;thin film;rf-sputtering;
 Language
Korean
 Cited by
 References
1.
K. Uchida, M. Ishida, T. Kikkawa, A. Kirihara, T. Murakami and E. Saitoh, J. Phys. Condens. Matter., 26, 389601 (2014). crossref(new window)

2.
K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa and E. Saitoh, Nature, 455, 778 (2008). crossref(new window)

3.
K.-D. Lee, D.-J. Kim. H. Y. Lee, S.-H. Kim, J.-H. Lee, K.-M. Lee, J.-R. Jeong, K.-S. Lee, H.-S. Song, J.-W. Sohn, S.-C. Shin and B.-G. Park, Scientific Reports, 5, 10249 (2015). crossref(new window)

4.
G. E.W. Bauer, E. Saitoh and B. J. Van Wees, Nat. Mater., 11, 391 (2012). crossref(new window)

5.
M. B. Jungfleisch, A. V. Chumak, A. Kehlberger, V. Lauer, D. H. Kim, M. C. Onbasli, C. A. Ross, M. Klaui and B. Hillebrands, Phys. Rev. B, 91, 134407 (2015). crossref(new window)

6.
G. Siegel, M. C. Prestgard, S. Teng and A. Tiwari, Scientific Reports, 4, 4429 (2014).

7.
D. Qu, S. Y. Huang, J. Hu, R. Wu and C. L. Chien, Phys. Rev. Lett., 110, 07206 (2013).

8.
P. Jang and J. Kim, J. Korean Magn. Soc., 15, 25 (2005). crossref(new window)

9.
S.-I. Kim, C.-Y. You and S.-Y. Park, Curr. Appl. Phys., 13, 1021 (2013). crossref(new window)

10.
M. Farle, Rep. Prog. Phys., 61, 755 (1998). crossref(new window)

11.
H. Suhl, Phys. Rev., 15, 555 (1955).