JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of H2S Concentration and Sulfurization Temperature on the Properties of Cu2ZnSnS4 Thin Films
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Journal of Materials Research
  • Volume 25, Issue 12,  2015, pp.708-712
  • Publisher : The Materials Research Society of Korea
  • DOI : 10.3740/MRSK.2015.25.12.708
 Title & Authors
Effect of H2S Concentration and Sulfurization Temperature on the Properties of Cu2ZnSnS4 Thin Films
Arepalli, Vinaya Kumar; Kim, Eui-Tae;
  PDF(new window)
 Abstract
This study reports the effects of gas concentration on the properties of thin films. Specifically, sulfurization process with low concentrations of 0.05% and 0.1%, along with 5% gas, was studied. CZTS films were directly synthesized on Mo/Si substrates by chemical bath deposition method using copper sulfate, zinc sulfate heptahydrate, tin chloride dihydrate, and sodium thiosulfate pentahydrate. Smooth CZTS films were grown on substrates at optimized chemical bath deposition condition. The CZTS films sulfurized at low concentrations of 0.05 % and 0.1% showed very rough and porous film morphology, whereas the film sulfurized at 5% yielded a very smooth and dense film morphology. The CZTS films were fully crystallized in kesterite crystal form when they were sulfurized at for 1 h. The kesterite CZTS film showed a reasonably good room-temperature photoluminescence spectrum that peaked in a range of 1.4 eV to 1.5 eV, consistent with the optimal bandgap for CZTS solar cell applications.
 Keywords
;CZTS;CBD;sulfurization;
 Language
English
 Cited by
 References
1.
K. Ito and T. Nakazawa, Jpn. J. Appl. Phys., 27, 2094 (1988). crossref(new window)

2.
H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani and S. Miyajima, Sol. Energy Mater. Sol. Cells, 65, 141 (2001). crossref(new window)

3.
K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi and H. Katagiri, Thin Solid Films, 515, 5997 (2007). crossref(new window)

4.
S. M. Pawar, A. V. Moholkar, I. K. Kim, S. W. Shin, J. H. Moon, J. I. Rhee and J. H. Kim, Curr. Appl. Phys., 10, 565 (2010). crossref(new window)

5.
A. V. Kumar, N. K. Park and E. T. Kim, Phys. Status Solidi A, 211, 1857 (2014). crossref(new window)

6.
N. Kamoun, H. Bouzouita and B. Rezig, Thin Solid Films, 515, 5949 (2007). crossref(new window)

7.
C. C. Surya, C. P. Chan, H. Lam and K. Y. Wong, Sol. Energy Mater. Sol. Cells, 94, 207 (2010). crossref(new window)

8.
K. Tanaka, N. Moritake and H. Uchiki, Sol. Energy Mater. Sol. Cells, 91, 1199 (2007). crossref(new window)

9.
W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, Adv. Energy Mater, 4, 1301465 (2013).

10.
J. He, L. Sun, K. Zhang, W. Wang, J. Jiang, Y. Chen, P. Yang and J. Chu, Appl. Surf. Sci., 264, 133 (2013). crossref(new window)

11.
J. He, L. Sun, Y. Chen, J. Jiang, P. Yang, J. Chu, J. Power Sources, 273, 600 (2015). crossref(new window)

12.
M. I. Amal and K. H. Kim, Thin Solid Films, 534, 144 (2013). crossref(new window)

13.
K. Maeda, K. Tanaka, Y. Fukui and H. Uchiki, Sol. Energy Mater. Sol. Cells, 95, 2855 (2011). crossref(new window)

14.
P. A. Fernandes, P. M. P. Salome and A. F. Cunha, Thin Solid Films, 517, 2519 (2009). crossref(new window)

15.
R. Caballero, E. Garcia-Llamas, J. M. Merino, M. Leon, I. Babichuk, V. Dzhagan, V. Strelchuk and M. Valakh, Acta Mater., 65, 412 (2014). crossref(new window)