Advanced SearchSearch Tips
High Performance Thin-Film Transistors Based on Zinc Oxynitride Semiconductors: Experimental and First-Principles Studies
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
High Performance Thin-Film Transistors Based on Zinc Oxynitride Semiconductors: Experimental and First-Principles Studies
Kim, Yang-Soo; Kim, Jong Heon; Kim, Hyun-Suk;
  PDF(new window)
The properties of zinc oxynitride semiconductors and their associated thin film transistors are studied. Reactively sputtered zinc oxynitride films exhibit n-type conduction, and nitrogen-rich compositions result in relatively high electron mobility. Nitrogen vacancies are anticipated to act as shallow electron donors, as their calculated formation energy is lowest among the possible types of point defects. The carrier density can be reduced by substituting zinc with metals such as gallium or aluminum, which form stronger bonds with nitrogen than zinc does. The electrical properties of gallium-doped zinc oxynitride thin films and their respective devices demonstrate the carrier suppression effect accordingly.
zinc oxynitride;thin-film transistor;field-effect mobility;flat panel displays;first-principles calculation;
 Cited by
H. Hosono, J. Non-Cryst. Solids, 352, 851 (2006). crossref(new window)

T. Kamiya, K. Nomura and H. Hosono, Sci. Technol. Adv. Mater., 11, 044305 (2010). crossref(new window)

J. S. Park, W.-J. Maeng, H.-S. Kim and J.-S. Park, Thin Solid Films, 520, 1679 (2012). crossref(new window)

Y. Ye, R. Lim and J. M. White, J. Appl. Phys., 106, 074512 (2009). crossref(new window)

H.-S. Kim, S. H. Jeon, J. S. Park, T. S. Kim, K. S. Son, J.-B. Seon, S.-J. Seo, S.-J. Kim, E. Lee, J. G. Chung, H. Lee, S. Han, M. Ryu, S. Y. Lee and K. Kim, Sci. Rep., 3, 1459 (2013). crossref(new window)

K.-C. Ok, H.-J. Jeong, H.-S. Kim and J.-S. Park, IEEE Electron Device Lett., 36, 38 (2015). crossref(new window)

K.-C. Ok, H.-J. Jeong, H.-M. Lee, J. Park and J.-S. Park, Ceram. Int., 41, 13281 (2015). crossref(new window)

J. T. Jang, J. Park, B. D. Ahn, D. M. Kim, S.-J. Choi, H.-S. Kim and D. H. Kim, ACS Appl. Mater. Interfaces, 7, 15570 (2015) crossref(new window)

S. Lee, A. Nathan, Y. Ye, Y. Guo and J. Robertson, Sci. Rep., 5, 13467 (2015). crossref(new window)

G. Kresse and J. Furthmuller, Matter Mater. Phys., 54, 11169 (1996). crossref(new window)

G. Kresse and J. Joubert, Matter Mater. Phys., 59, 1758 (1999). crossref(new window)

P. E. Blochl, Matter Mater. Phys., 50, 17953 (1994). crossref(new window)

J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996). crossref(new window)

Y. Kang, S. H. Jeon, Y.-W. Son, Y.-S. Lee, M. Ryu, S. Lee and S. Han, Phys. Rev. Lett., 108, 196404 (2012). crossref(new window)

T. L. Tansley and R. J. Egan, Matter Mater. Phys., 45, 10942 (1992). crossref(new window)

M. G. Ganchenkova and R. M. Nieminen, Phys. Rev. Lett., 96, 196402 (2008).

R. Long, Y. Dai, L. Yu, B. Huang and S. Han, Thin Solid Films, 516, 1297 (2008). crossref(new window)

J. H. Jeong, H. W. Yang, J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, J. Song and C. S. Hwang, Electrochem. Solid-State Lett., 11, H157 (2008). crossref(new window)

J. S. Park, T. S. Kim, K. S. Son, W.-J. Maeng, H.-S. Kim, M. Ryu and S. Y. Lee, Appl. Phys. Lett., 98, 012107 (2011). crossref(new window)