JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Crystallization Mechanism of Lithium Dislicate Glass with Various Particle Sizes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Crystallization Mechanism of Lithium Dislicate Glass with Various Particle Sizes
Choi, Hyun Woo; Yoon, Hae Won; Yang, Yong Suk; Yoon, Su Jong;
  PDF(new window)
 Abstract
We have investigated the crystallization mechanism of the lithium disilicate (, LSO) glass particles with different sizes by isothermal and non-isothermal processes. The LSO glass was fabricated by rapid quenching of melt. X-ray diffraction and differential scanning calorimetry measurements were performed. Different crystallization models of Johnson-Mehl-Avrami, modified Ozawa and Arrhenius were adopted to analyze the thermal measurements. The activation energy E and the Avrami exponent n, which describe a crystallization mechanism, were obtained for three different glass particle sizes. Values of E and n for the glass particle with size under , , and , were 2.28 eV, 2.21 eV, 2.19 eV, and ~1.5 for the isothermal process, respectively. Those values for the non-isothermal process were 2.4 eV, 2.3 eV, 2.2 eV, and ~1.3, for the isothermal process, respectively. The obtained values of the crystallization parameters indicate that the crystallization occurs through the decreasing nucleation rate with a diffusion controlled growth, irrespective to the particle sizes. It is also concluded that the smaller glass particles require the higher heat absorption to be crystallized.
 Keywords
glass;phase transition;crystallization mechanism;activation energy;
 Language
Korean
 Cited by
 References
1.
T. Kawamoto and S. Abe, Phys. Rev. B, 68, 235112 (2003). crossref(new window)

2.
G. Sarre, P. Blanchard and M. Broussely, J. Power Sources, 127, 65 (2004). crossref(new window)

3.
T. Fuss, C. S. Ray, N. Kitamura, M. Makihara, and D. E. Day, J. Non-Cryst. Solids, 318, 157 (2003). crossref(new window)

4.
H. W. Yoon, C. H. Song, Y. S. Yang and S. J. Yoon, Korean J. Mater. Res., 22, 61 (2012). crossref(new window)

5.
P. Hautojarvi, A. Vehanen, V. Komppa and E. Pajanne, J. Non-Cryst. Solids, 29, 365 (1978). crossref(new window)

6.
H. R. Fernandes, D. U. Tulyaganov, I. K. Goel and M. F. Ferreira, J. Am. Ceram. Soc., 91, 11 (2008).

7.
S. Furusawa, T. Kasahara and A. Kamiyama, Solid State Ionics, 180, 649 (2009). crossref(new window)

8.
J. Du and L. R. Corrales, J. Chem. Phys., 125, 114702 (2006). crossref(new window)

9.
I. Gutzow, B. Durschang and C. Russel, J. Mater. Sci. 32, 5389 (1997). crossref(new window)

10.
S. Buchner, P. Soares, A. S. Pereira, E. B. Ferreira, and N. M. Balzaretti, J. Non-Cryst. Solids, 356, 3004 (2010). crossref(new window)

11.
N. Mizouchi and A. Cooper Jr., J. Am. Ceram. Soc., 56, 320 (1973). crossref(new window)

12.
X. J. Xu, C. S. Ray, and D. E. Day, J. Am. Ceram. Soc., 74, 909 (1991). crossref(new window)

13.
T. Fuss, C. S. Ray, N. Kitamura, M. Makihara and D. E. Day, J. Non-Cryst. Solids, 318, 157 (2003). crossref(new window)

14.
M. Avrami, J. Chem. Phys., 9, 177 (1941). crossref(new window)

15.
H. E. Kissinger, J. Res. Nat. Bur. Stand., 57, 217 (1956). crossref(new window)

16.
D. W. Henderson, J. Non-Cryst. Solids, 30, 301 (1979). crossref(new window)

17.
K. Matusita, T. Komatsu and R. Yokota, J. Mat. Sci., 19, 291 (1984). crossref(new window)

18.
H. W. Choi, Y. H. Kim, Y. H. Rim and Y. S. Yang, Phys. Chem. Chem. Phys., 15, 9940 (2013). crossref(new window)

19.
J. W. Christian, The theory of transformations in metals and alloys, 2nd Part 1 (Pergamon Press, NY, 1975).

20.
S. J. Kim, J. E. Kim, Y. H. Rim and Y. S. Yang, Solid State Commun., 131, 129 (2004). crossref(new window)

21.
H. W. Choi and Y. S. Yang, J. Them. Anal. Calorim., 119, 2171 (2015). crossref(new window)

22.
S. J. Kim, J. E. Kim, H. W. Choi, Y. H. Rim and Y. S. Yang, Mat. Sci. Eng. B, 113, 149 (2004). crossref(new window)

23.
H. W. Choi, Y. H. Rim and Y. S. Yang, J. Korean Phys. Soc., 63, 2376 (2013). crossref(new window)