JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Recent Application Technology Trends Analysis of Zinc Sulfide: Based on Patent Information Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Recent Application Technology Trends Analysis of Zinc Sulfide: Based on Patent Information Analysis
Lee, Do-Yeon; Kang, Hyun-Moo; Yoon, Jongman; Lee, Jeong-Gu;
  PDF(new window)
 Abstract
Zinc Sulfide (ZnS) is one of the II-VI semiconducting materials, having novel fundamental properties and diverse areas of application such as light-emitting diodes (LEDs), electroluminescence, flat panel displays, infrared windows, catalyst, chemical sensors, biosensors, lasers and biodevices, etc. However, despite the remarkable versatility and prospective potential of ZnS, research and development (R&D) into its applications has not been performed in much detail relative to research into other inorganic semiconductors. In this study, based on global patent information, we analyzed recent technical trends and the current status of R&D into ZnS applications. Furthermore, we provided new technical insight into ZnS applicable fields using in-depth analysis. Especially, this report suggests that ZnS, due to its infrared-transmitting optical property, is a promising material in astronomy and military fields for lenses of infrared systems. The patent information analysis in this report will be utilized in the process of identifying the current positioning of technology and the direction of future R&D.
 Keywords
zinc sulfide(ZnS);semiconducting;infrared-transmitting;optical;patent information analysis;technology trend;
 Language
Korean
 Cited by
 References
1.
X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando and D. Golberg, Prog. Mater. Sci., 56, 175 (2011). crossref(new window)

2.
W. L. Davidson, Phys. Rev., 74, 116 (1948).

3.
J. Huang, Y. Yang, S. Xue, B. Yang, S. Liu and J. Shen, Appl. Phy. Lett., 70, 2335 (1997). crossref(new window)

4.
S. Okur, N. Uzar, N. Tekguzel, A. Erol and M. Arikan, Physica E, 44, 1103 (2012). crossref(new window)

5.
M. Bredol and J. Merichi, J. Mater. Sci., 33, 471 (1998). crossref(new window)

6.
P. Calandra, M. Goffredi and V. T. Liveri, Colloids Surf. A, 9, 160 (1999).

7.
M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen and Z. L. Wang, ACS Nano, 3, 357 (2009). crossref(new window)

8.
M. Bilge, S. Kart, H. H. Kart and T. Cagin, JAMME, 31, 29 (2008).

9.
X. Fang, L. Wu and L. Hu, Adv. Mater., 23, 585 (2010).

10.
B. Y. Geng, G. Z. Wang, Z. Jiang, T. Xie, S. H. Sun, G. W. Meng and L. D. Zhang, Appl. Phys. Lett., 82, 4791 (2003). crossref(new window)

11.
N. Karar, F. Singh and B. R. Mehta, J. Appl. Phys., 95, 656 (2004). crossref(new window)

12.
R. Z. Stodilka, J. L. Carson, K. Yu, M. B. Zaman, C. Li and D. Wilkinson, J. Phys. Chem., 113, 2580 (2009).

13.
N. Liu, Y. Mu, Y. Chen, H. Sun, S. Han, M. Wang, H. Wang, Y. Li, Q. Xu, P. Huang and Z. Sun, Part. Fibre. Toxicol., 10, 37 (2013). crossref(new window)

14.
B. J. Swift and F. Baneyx, PLoS One, 10, e0124916 (2015). crossref(new window)

15.
J. P. Borah and K. C. Sarma, Acta. Physica. Polonica A, 114, 713 (2008). crossref(new window)

16.
Y. C. Zhu, Y. Bondo and D. F. Xue, Appl. Phys. Lett., 82, 1769 (2003). crossref(new window)

17.
P. Biswas, R. Senthil Kumar, P. Ramavath, V. Mahendar, G. V. N. Rao, U. S. Hareesh and R. Johnson, J. Alloy. Comp., 496, 273 (2010). crossref(new window)

18.
R. Zamiri, D. M. Tobaldi, H. A. Ahangar, A. Rebelo, M. P. Seabra, M. S. Belsleyc and J. M. Ferreira, RSC Adv., 4, 35383 (2014). crossref(new window)

19.
Y. Li and Y. Wu, J. Am. Ceram. Soc., 98, 2972 (2015). crossref(new window)

20.
W. G. Li, D. J. Li, T. B. Cheng and D. N. Fang, J. Mech., 31, 449 (2015). crossref(new window)

21.
Y. J. Yoo, K. S. Chang, S. W. Hong and Y. M. Song, Opt. Quant. Electron., 47, 1503 (2015). crossref(new window)