Advanced SearchSearch Tips
Rectifying and Nitrogen Monoxide Gas Sensing Properties of a Spin-Coated ZnO/CuO Heterojunction
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Rectifying and Nitrogen Monoxide Gas Sensing Properties of a Spin-Coated ZnO/CuO Heterojunction
Hwang, Hyeonjeong; Kim, Hyojin;
  PDF(new window)
We present the rectifying and nitrogen monoxide (NO) gas sensing properties of an oxide semiconductor heterostructure composed of n-type zinc oxide (ZnO) and p-type copper oxide thin layers. A CuO thin layer was first formed on an indium-tin-oxide-coated glass substrate by sol-gel spin coating method using copper acetate monohydrate and diethanolamine as precursors; then, to form a p-n oxide heterostructure, a ZnO thin layer was spin-coated on the CuO layer using copper zinc dihydrate and diethanolamine. The crystalline structures and microstructures of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy. The observed current-voltage characteristics of the p-n oxide heterostructure showed a non-linear diode-like rectifying behavior at various temperatures ranging from room temperature to . When the spin-coated ZnO/CuO heterojunction was exposed to the acceptor gas NO in dry air, a significant increase in the forward diode current of the p-n junction was observed. It was found that the NO gas response of the ZnO/CuO heterostructure exhibited a maximum value at an operating temperature as low as and increased gradually with increasing of the NO gas concentration up to 30 ppm. The experimental results indicate that the spin-coated ZnO/CuO heterojunction structure has significant potential applications for gas sensors and other oxide electronics.
oxide semiconductor;oxide heterostructure;gas sensor;zinc oxide;copper oxide;
 Cited by
G. F. Fine, L. M. Cavanagh, A. Afonja and R. Bibions, Sensors, 10, 5469 (2010). crossref(new window)

N. Yamazoe and N. Miura, Sens. Actuators B, 20, 95 (1994). crossref(new window)

Y. Min, H. L. Tuller, S. Palzer, J. Wollenstein and H. Bottner, Sens. Actuators B, 93, 435 (2003). crossref(new window)

T. Gao and T. H. Wang, Appl. Phys. A, 80, 1451 (2005). crossref(new window)

S. Baruah and J. Dutta, Sci. Technol. Adv. Mater., 10, 013001 (2009). crossref(new window)

C. M. Chen, S. J. Chang, S. P. Chang, M. J. Li, I. C. Chen, T. J. Hsueh and C. I. Hsu, Chem. Phys. Lett., 476, 69 (2009). crossref(new window)

S. Maridha and D. Basak, Semicond. Sci. Technol., 21, 928 (2006). crossref(new window)

J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Barad and A. J. Nozik, Adv. Mater., 22, 3704 (2010). crossref(new window)

A. El-Trass, H. El-Shamy, I. El-Mehasseb and M. El-Kemary, Appl. Surf. Sci., 258, 2997 (2012). crossref(new window)

H. Kidowaki, T. Oku and T. Akiyama, J. Phys. Conf. Ser., 352, 012022 (2012). crossref(new window)

L. T. Hoa and S. H. Hur, Phys. Stat. Sol. A, 210, 1213, (2013). crossref(new window)

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed., Wiley, New York (2007), p. 790.

C. Sah, R. N. Noyce and W. Shockley, Proc. IRE, 45, 1228 (1957). crossref(new window)

X. D. Chen, C. C. Ling, S. Fung, C. D. Beling, Y. F. Mai, R. K. Y. Fu, G. C. Siu and P. K. Chu, Appl. Phys. Lett., 88, 132104 (2006). crossref(new window)

Z. Luo, J. H. Hao and J. Gao, Appl. Phys. Lett., 91, 062105 (2007). crossref(new window)

R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams and G. A. Ozin, Adv. Mater., 13, 1468 (2001). crossref(new window)

S. J. Park, H. Kim and D. Kim, Korean J. Mater. Res., 24, 19 (2014). crossref(new window)

S. C. Naisbitt, K. F. E. Pratt, D. E. Williams and I. P. Parkin, Sens. Actuators B, 114, 969 (2006). crossref(new window)

S. Ahlers, G. Muller and Th. Doll, Encyclopedia of Sensors, p. 413, ed. by C. A. Grimes, E. C. Dickey and M. V. Pishko, American Scientific Publishers (2006).