JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Pretreatment Condition of Cu by Ammonium-Based Mixed Solvent and Its Effects on the Fabrication of Ag-Coated Cu Particles
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Pretreatment Condition of Cu by Ammonium-Based Mixed Solvent and Its Effects on the Fabrication of Ag-Coated Cu Particles
Lee, Hee Bum; Lee, Jong-Hyun;
  PDF(new window)
 Abstract
To achieve the fabrication of high-quality Ag-coated Cu particles through a wet chemical process, we reported herein pretreatment conditions using an ammonium-based mixed solvent for the removal of a layer on Cu particles that were oxidized in air for 1 hr at or for 3 days at room temperature. Furthermore, we discussed the results of post-Ag plating with respect to removal level of the oxide layer. X-ray diffraction results revealed that the removal rate of the oxide layer is directly proportional to the concentration of the pretreatment solvent. With the results of Auger electron spectroscopy using oxidized Cu plates, the concentrations required to completely remove 50-nm-thick and 2-nm-thick oxides within 5 min were determined to be X2.5 and X0.13. However, the optimal concentrations in an actual Ag plating process using Cu powder increased to X0.4 and X0.5, respectively, because the oxidation in powder may be accelerated and the complete removal of oxide should be tuned to the thickest oxide layer among all the particles. Back-scattered electron images showed the formation of pure fine Ag particles instead of a uniform and smooth Ag coating in the Ag plating performed after incomplete removal of the oxide layer, indicating that the remaining oxide layer obstructs heterogeneous nucleation and plating by reduced Ag atoms.
 Keywords
Ag-coated Cu;oxide removal;surface pretreatment;ammonium-based solvent;Auger electron spectroscopy (AES);
 Language
Korean
 Cited by
1.
Submicron Ag-coated Cu particles and characterization methods to evaluate their quality, Journal of Alloys and Compounds, 2016, 689, 952  crossref(new windwow)
 References
1.
X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang, Mater. Lett., 57, 3987 (2003). crossref(new window)

2.
D. S. Jung, H. M. Lee, Y. C. Kang and S. B. Park, J. Colloid Interface Sci., 364, 574 (2011). crossref(new window)

3.
J. Zhao, D. M. Zhang and J. Zhao, J. Solid State Chem., 184, 2339 (2011). crossref(new window)

4.
H. T. Hai, J. G. ahn, D. J. Kim, J. R. Lee, H. S. Chung and C. O. Kim, Surf. Coat. Technol., 201, 3788 (2006). crossref(new window)

5.
M. Grouchko, A. Kamyshny and S. Magdassi, J. Mater. Chem., 19, 3057 (2009). crossref(new window)

6.
Y. Peng, C. Yang, K. Chen, S. R. Popuri, C. -H. Lee and B. -S. Tang, Appl. Surf. Sci., 263, 38 (2012). crossref(new window)

7.
A. Muzikansky, P. Nanikashvili, J. Grinblat and D. Zitoun, J. Phys. Chem. C, 117, 3093 (2013).

8.
R. Zhang, W. Lin, K. Lawrence and C. P. Wong, Int. J. Adhe. Adhes., 30, 403 (2010). crossref(new window)

9.
J. H. Kim and J. -H. Lee, Korean. J. Mater. Res., 24, 617 (2014). crossref(new window)

10.
G. Kim, K. -M Jung, J. -T. Moon and J. -H. Lee, J. Microelectron. Packag. Soc., 21, 51 (2014).

11.
H. -W. Cui, J. -T. Jiu, T. Sugahara, S. Nagao, K. Suganuma and H. Uchida, Electron. Mater. Lett., 11, 315 (2015). crossref(new window)

12.
Y. -S. Eom, K. -S. Choi, S. -H. Moon, J. -H. Park, J.-H. Lee and J. -T. Moon, ETRI J. 33, 864 (2011). crossref(new window)

13.
Y. Plyuto, J. -M. Berquier, C. Jacquiod and C. Ricolleau, Chem. Commun., 17, 1653 (1999).

14.
R. G. Haverkamp and A. T. Marshall, J. Nanopart. Res., 11, 1453 (2009). crossref(new window)

15.
D. V. Goia and E. Matijevic, New J. Chem., 22, 1203 (1998). crossref(new window)