JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Synthesis and Characterization of TiO2, Cu2O and Al2O3 Aerosol Nanoparticles Produced by the Multi-Spark Discharge Generator
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Synthesis and Characterization of TiO2, Cu2O and Al2O3 Aerosol Nanoparticles Produced by the Multi-Spark Discharge Generator
Efimov, Alexey; Lizunova, Anna; Sukharev, Valentin; Ivanov, Victor;
  PDF(new window)
 Abstract
The morphology, crystal structure and size of aerosol nanoparticles generated by erosion of electrodes made of different materials (titanium, copper and aluminum) in a multi-spark discharge generator were investigated. The aerosol nanoparticle synthesis was carried out in air atmosphere at a capacitor stored energy of 6 J, a repetition rate of discharge of 0.5 Hz and a gas flow velocity of 5.4 m/s. The aerosol nanoparticles were generated in the form of oxides and had various morphologies: agglomerates of primary particles of and or aggregates of primary particles of . The average size of the primary nanoparticles ranged between 6.3 and 7.4 nm for the three substances studied. The average size of the agglomerates and aggregates varied in a wide interval from 24.6 nm for to 46.1 nm for .
 Keywords
nanoparticles;synthesis;aerosols;multi-spark discharge;
 Language
English
 Cited by
 References
1.
F. E. Kruis, H. Fissan and A. Peled, J. Aerosol Sci., 29, 511 (1998). crossref(new window)

2.
D. Liu and G. Cao, Energy Environ. Sci., 3, 1218 (2010). crossref(new window)

3.
G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 41, 797 (2012). crossref(new window)

4.
F. Wang, W. B. Tan, Y. Zhang, X. Fan, M. Wang, Nano-technology, 17, R1 (2006).

5.
S. K. Murthy, Int. J. Nanomedicine, 2, 129 (2007).

6.
A. Kamyshny and S. Magdassi, Small, 10, 3515 (2014). crossref(new window)

7.
C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole and C. Sanchez, Adv. Mater., 23, 599 (2011). crossref(new window)

8.
Y. A. Kotov, Nanotechnol. Russ., 4, 415 (2009). crossref(new window)

9.
L. Madler, H. K. Kammler, R. Mueller and S. E. Pratsinis, J. Aerosol Sci., 33, 369 (2002). crossref(new window)

10.
D. Vollath, J. Nanopart. Res., 10, 39 (2008). crossref(new window)

11.
V. V. Osipov, Y. A. Kotov, M. G. Ivanov, O. M. Samatov, V. V. Lisenkov, V. V. Platonov, A. M. Murzakaev, A. I. Medvedev and E. I. Azarkevich, Laser Phys., 16, 116 (2006). crossref(new window)

12.
N. S. Tabrizi, M. Ullmann, V. A. Vons, U. Lafont and A. Schmidt-Ott, J. Nanoparticle Res., 11, 315 (2009). crossref(new window)

13.
B. K. Ku and A. D. Maynard, J. Aerosol Sci., 37, 452 (2006). crossref(new window)

14.
http://www.buonapart-e.eu/

15.
T. V. Pfeiffer, J. Feng and A. Schmidt-Ott, Adv. Powder Technol., 25, 56 (2014). crossref(new window)

16.
B. O. Meuller, M. E. Messing, D. L. J. Engberg, A. M. Jansson, L. I. M. Johansson, S. M. Norlen, N. Tureson and K. Deppert, Aerosol Sci. Technol., 46, 1256 (2012). crossref(new window)

17.
J. H. Byeon, J. H. Park, J. Hwang, J. Aerosol Sci., 39, 888 (2008). crossref(new window)

18.
J. T. Kim and J. S. Chang, J. Electrostat., 63, 911 (2005). crossref(new window)

19.
V. A. Vons, L. C. P. M. de Smet, D. Munao, A. Evirgen, E. M. Kelder and A. Schmidt-Ott, J. Nanopart. Res., 13, 4867 (2011). crossref(new window)

20.
H. Horvath and M. Gangl, J. Aerosol Sci., 34, 1581 (2003). crossref(new window)

21.
D. Z. Pai, K. Ostrikov, S. Kumar, D. A. Lacoste, I. Levchenko and C. O. Laux, Sci. Reports, 3, 1221 (2013).

22.
E. Hontanon, J. M. Palomares, M. Stein, X. Guo, R. Engeln, H. Nirschl and F. E. Kruis, J. Nanopart. Res., 15, 1957 (2013). crossref(new window)

23.
A. A. Efimov, V. V. Ivanov, A. V. Bagazeev, I. V. Beketov, I. A. Volkov and S. V. Shcherbinin, Tech. Phys. Lett., 39, 1053 (2013). crossref(new window)

24.
G. A. Mesyats, Pulsed power, Springer Science & Business Media, New York, USA(2007).

25.
R. S. Windeler, S. K. Friedlander and K. E. J. Lehtinen, Aerosol Sci. Technol., 27, 174 (1997). crossref(new window)

26.
R. S Windeler, K. E. J. Lehtinen and S. K. Friedlander, Aerosol Sci. Technol., 27, 191 (1997). crossref(new window)

27.
D. A. H. Hanaor and C. C. Sorrell, J. Mater. Sci., 46, 855 (2011). crossref(new window)

28.
A. O. Musa, T. Akomolafe and M. J. Carter, Sol. Energy Mater. Sol. Cells, 51, 305 (1998). crossref(new window)

29.
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, Nature, 407, 496 (2000). crossref(new window)

30.
H. Zhang, X. Ren and Z. Cui, J. Cryst. Growth, 304, 206 (2007). crossref(new window)

31.
V. V. Ivanov, S. N. Paranin and V. R. Khrustov, Phys. Met. Met., 94, S98 (2002).

32.
V. G. Zhigalina, A. A. Lizunova, S. N. Sulyanov, V. V. Ivanov and N. A. Kiselev, Nanotechnol. Russ., 9, 492 (2014). crossref(new window)

33.
T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter and M. Batzill, Sci. Reports, 4, 4043 (2014).

34.
P. R. Solanki, A. Kaushik, V. V. Agrawal and B. D. Malhotra, NPG Asia Mater., 3, 17 (2011). crossref(new window)

35.
T. Kim, H. Kang, S. Jeong, D. J. Kang, C. Lee, C. H. Lee, M. K. Seo, J. Y. Lee and B. J. Kim, ACS Appl. Mater. Interfaces, 6, 16956 (2014). crossref(new window)

36.
R. Mueller, H. K. Kammler, S. E. Pratsinis, A. Vital, G. Beaucage and P. Burtscher, Powder Technol., 140, 40 (2004). crossref(new window)

37.
H. K. Kammler, L. Madler and S. E. Pratsinis, Chem. Eng. Technol., 24, 583 (2001). crossref(new window)

38.
X. Guo, A. Gutsche, M. Wagner, M. Seipenbusch and H. Nirschl, J. Nanopart. Res., 15, 1559 (2013). crossref(new window)

39.
S. Bau, O. Witschger, F. Gensdarmes and D. Thomas, J. Nanopart. Res., 14, 1217 (2012). crossref(new window)

40.
H. M. Ryan, High Voltage Engineering and Testing, 2nd ed., The Institution of Electrical Engineers, London, England (2001).

41.
ISO 14887:2000 (E). Sample Preparation - Dispersing Procedures for Powders in Liquids.

42.
W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed., Wiley-Interscience, New York, USA (1999).

43.
D. R. Lide, CRC handbook of chemistry and physics : a ready reference book of chemical and physical data, 86th ed., CRC Press, Boca Raton, USA (2005).

44.
M. Ullmann, S. K. Friedlander and A. Schmidt-Ott, J. Nanopart. Res., 4, 499 (2002). crossref(new window)

45.
S. K. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd ed., Oxford University Press, New York, USA (2000).

46.
K. E. J. Lehtinen and M. R. Zachariah, J. Aerosol Sci., 33, 357 (2002). crossref(new window)

47.
T. E. Itina and A. Voloshko, Appl. Phys. B, 113, 473 (2013). crossref(new window)

48.
F. L. Jones, J. Appl. Phys., 1, 60 (1950).

49.
R. N. Szente, R. J. Munz and M. G. Drouet, J. Phys. D: Appl. hys., 27, 1443 (1994).

50.
M. S. Naidu and V. Kamaraju, High Voltage Engineering, 3rd ed., Tata McGraw-Hill Education, New Delhi, India (2004).

51.
F. Llewellyn-Jones, M. A., D.Phil., D. Sc. and F. Inst. P., Platinum Metals Rev., 7, 58 (1963).

52.
W. Zhu and S. E. Pratsinis, ACS Symp. Ser., 662, 64 (2009).

53.
H. C. Oh, J. H. Ji, J. H. Jung and S. S. Kim, Mater. Sci. Forum, 544-545, 143 (2007).

54.
J. H. Byeon and Y. W. Kim, ACS Appl. Mater. Interfaces, 6, 763 (2014). crossref(new window)

55.
X. Jing, J. H. Park, T. M. Peters and P. S. Thorne, Toxicol. In Vitro, 29, 502 (2015). crossref(new window)

56.
S. Ghaemi, A. Schmidt-Ott and F. Scarano, Meas. Sci. Technol., 21, 105403 (2010). crossref(new window)