Advanced SearchSearch Tips
Diffusion of the High Melting Temperature Element from the Molten Oxides for Copper Alloys
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Diffusion of the High Melting Temperature Element from the Molten Oxides for Copper Alloys
Song, Jeongho; Noh, Yunyoung; Song, Ohsung;
  PDF(new window)
To alloy high melting point elements such as boron, ruthenium, and iridium with copper, heat treatment was performed using metal oxides of , , and at the temperature of in vacuum for 30 minutes. The microstructure analysis of the alloyed sample was confirmed using an optical microscope and FE-SEM. Hardness and trace element analyses were performed using Vickers hardness and WD-XRF, respectively. Diffusion profile analysis was performed using D-SIMS. From the microstructure analysis results, crystal grains were found to have formed with sizes of 2.97 mm. For the copper alloys formed using metal oxides of , , and the sizes of the crystal grains were 1.24, 1.77, and 2.23 mm, respectively, while these sizes were smaller than pure copper. From the Vickers hardness results, the hardness of the Ir-copper alloy was found to have increased by a maximum of 2.2 times compared to pure copper. From the trace element analysis, the copper alloy was fabricated with the expected composition. From the diffusion profile analysis results, it can be seen that 0.059 wt%, 0.030 wt%, and 0.114 wt% of B, Ru, and Ir, respectively, were alloyed in the copper, and it led to change the hardness. Therefore, we verified that alloying of high melting point elements is possible at the low temperature of .
copper alloy;vacuum furnace;molten oxide;vickers hardness;high melting temperature element;
 Cited by
J. S. Lin, C. C. Chen, E. W. G. Diau and T. F. Liu, J. Mater. Process. Technol., 206, 425 (2008). crossref(new window)

C. Cretu and E. V. D. Lingen, Gold Bull., 32, 115 (1999). crossref(new window)

W. S. Rapson, Gold Bull., 23, 125 (1990). crossref(new window)

X. J. Zhang, K. K. Tong, R. Chan and M. Tan, J. Mater. Process. Technol., 48, 603 (1995). crossref(new window)

M. J. Lagos, P. A. S. Autreto, J. Bettini, F. Sato, S. O. Dantas, D. S. Glavao and D. Ugarte, J. Appl. Phys., 117, 094301 (2015). crossref(new window)

D. Ott and C. J. Raub, Gold Bull., 14, 69 (1981). crossref(new window)

C. Gross, W. Assumus, A. Muiznieks, A. Muhlbauer, C. Stenzel and O. Schulz, J. Cryst. Growth, 198-199, 188 (1999). crossref(new window)

H. Nishiyama, T. Sawada, H. Takana, M. Tanaka and M. Ushio, ISIJ Int., 46, 705 (2006). crossref(new window)

S. Berendts and M. Lerch, J. Cryst. Growth, 336, 106 (2011). crossref(new window)

H. J. T. Ellingham, J. Soc. Chem. Ind., 63, 125 (1944). crossref(new window)

D. A. Porter, K. E. Easterling, Phase Transformation in Metal and Alloys, 3th ed, p.357, T. J. Press Ltd., Cornwall, England (1992).

Y. S. Oh, M. S. Thesis, p.1-2, KAIST, Daejeon, Korea (2011).

W. F. Miao and D. E. Laughlin, Scr. Mater., 40, 873 (1999). crossref(new window)

O. Ryen, B. Holmedal, O. Nijs, E. Sjolander and H. Ekstrom, Metall. Mater. Trans. A, 37, 1999 (2006). crossref(new window)

P. H. Kitabjian and W. D. Nix, Acta Mater., 46, 701 (1998). crossref(new window)

I. W. Croudace, A. Rindby and R. G. Rothwell, Geol. Soc. Spec. Publ., 267, 51 (2006). crossref(new window)