JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Modification of Coal-Tar-Pitch and Carbon Fiber Properties by Polymer Additives
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Modification of Coal-Tar-Pitch and Carbon Fiber Properties by Polymer Additives
Kim, Jung-Dam; Yun, Jae-Min; Lim, Yun-Soo; Kim, Myung-Soo;
  PDF(new window)
 Abstract
In order to use coal tar pitch (CTP) as a raw material for carbon fibers, it should have suitable properties such as a narrow range of softening point, suitable viscosity and uniform optical properties. In this study, raw CTP was modified by heat treatment with three types of polymer additives (PS, PET, and PVC) to make a spinnable pitch for carbon fibers. The yield, softening point, C/H ratio, insoluble yield, and meso-phase content of various modified CTPs with polymer additives were analyzed by changing the type of polymer additive and the heat treatment temperature. The purpose of this study was to compare the properties of CTPs modified by polymer addition with those of a commercial CTP. After the pitch spinning, the obtained green fibers were stabilized and carbonized. The properties of the respective fibers were analyzed to compare their uniformity, diameter change, and mechanical properties. Among three polymer additives, PS220 and PET261 pitches were found to be spinnable, but the carbon fibers from PET261 showed mechanical properties comparable with those of a commercial CTP produced by an air-blowing method (OCI284). The CTPs modified with polymer additive had higher -resin fractions than the CTP with only thermal treatment indicating a beneficial effect of carbon fiber application.
 Keywords
coal-tar-pitch;carbon fiber;polystyrene;poly ethylene terephthalate;poly vinyl chloride;
 Language
Korean
 Cited by
 References
1.
M. C. Kim, S. Y. Eom, S. K. Ryu and D. D. Edie, Korean J. Chem. Eng., 43, 745 (2005).

2.
S. M. Oh and Y. D. Park, Fuel, 78, 1859 (1999). crossref(new window)

3.
W. Ciesinska, J. Zielinski and T. Bzozowska, J. Therm. Anal. Calorim., 95, 193 (2009). crossref(new window)

4.
C. Blanco, R. Santamaria, J. Bermejo and R. Menendez, Carbon, 38, 517 (2000). crossref(new window)

5.
B. Yu, C. Wang, M. Chen, J. Zheng and J. QI, Fuel Process. Technol., 104, 155 (2012). crossref(new window)

6.
J. J. Fernandez, A. Figueiras, M. Granda, J. Bermejo and R. Menendez, Carbon, 33, 295 (1995). crossref(new window)

7.
H. J. Ko, C. U. Park, H. H. Cho, M. J. Yoo, M. S. Kim and Y. S. Lim, Korean J. Mater. Res., 23, 276 (2013). crossref(new window)

8.
J. Machnikowski, H. Machnikoska, T. Brzozowska and J. Zielinski, J. Anal. Appl. Pyrol, 65, 147 (2002). crossref(new window)

9.
J. Zielinski, B. Pacewska, T. Bzozowska and J. Machnikowski, J. Therm. Anal. Calorim., 60, 296 (2000).

10.
T. Brzozowska, J. Zielinski and J. Machnikowski, J. Anal. Appl. Pyrol, 48, 45 (1998). crossref(new window)

11.
J. S. Hwang, C. H. Lee, K. H. Cho, M. S. Kim, C. J. Kim, S. K. Ryu and B. S. Rhee, Korean J. Chem. Eng. Res., 33, 551 (1995).

12.
M. S. Kim, S. Y. Kim and J. C. Hwang, J. Korean Oil Chemist’s Soc., 14, 77 (1997).

13.
M. J. Yoo, H. J. Ko, Y, S, Lim and M, S, Kim, Carbon Lett., 15, 247 (2014). crossref(new window)

14.
C. Panaitescu and G. Predeanu, Int. J. Coal Geol., 71, 448 (2007). crossref(new window)

15.
J. A. Monge, D. C. Amoros and A. L. Solano, Fuel, 80, 41 (2001). crossref(new window)

16.
M. Cranda, E. Casal, J. Bermejo and R. Menendez, Carbon, 39, 483 (2001). crossref(new window)

17.
M. D. Guillen, M. J. Iglesias, A. Dominguez and C. G. Blanco, Energ. Fuel., 6, 518 (1992). crossref(new window)

18.
M. D. Guillen, M. J. Iglesias, A. Dominguez and C. G. Blanco, Fuel, 74, 1595 (1995). crossref(new window)

19.
B. Manoj and A. G. Kunjumana, Int. J. Electrochem. Sci., 7, 3127 (2012).

20.
C. Lu, S. Xu, Y. Gan, S. Liu and C. Liu, Carbon, 43, 2295 (2005). crossref(new window)

21.
P. R. Choi, E. Lee, S. H. Kwon, J. C. Jung and M. S. Kim, J. Phys. Chem. Sol., 87, 72 (2015). crossref(new window)