Advanced SearchSearch Tips
Electrical Property Evaluation of Printed Copper Nano-Ink Annealed with Infrared-Lamp Rapid Thermal Process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electrical Property Evaluation of Printed Copper Nano-Ink Annealed with Infrared-Lamp Rapid Thermal Process
Han, Hyun-Suk; Kim, Changkyu; Yang, Seung-Jin; Kim, Yoon-Hyun;
  PDF(new window)
A sintering process for copper based films using a rapid thermal process with infrared lamps is proposed to improve the electrical properties. Compared with films produced by conventional thermal sintering, the microstructure of the copper based films contained fewer internal and interfacial pores and larger grains after the rapid thermal process. This high-density microstructure is due to the high heating rate, which causes the abrupt decomposition of the organic shell at higher temperatures than is the case for the low heating rate; the high heating rate also induces densification of the copper based films. In order to confirm the effect of the rapid thermal process on copper nanoink, copper based films were prepared under varying of conditions such as the sintering temperature, time, and heating rate. As a result, the resistivity of the copper based films showed no significant changes at high temperature () according to the sintering conditions. On the other hand, at low temperatures, the resistivity of the copper based films depended on the heating rate of the rapid thermal process.
Cu nanoparticle;infrared lamp;low temperature sintering;rapid thermal process;Cu nano ink;
 Cited by
H.-S. Han, S.-W. Kwak, B. Kim, T.-M. Lee, S.-H. Kim and I. Kim, Korean J. Mater. Res., 22, 9 (2012).

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu and J. C. Sturm, Appl. Phys. Lett., 72, 519 (1998). crossref(new window)

T. Kawase, S. Moriya, C. J. Newsome and T. Shimoda, Jpn. J. Appl. Phys., 44, 3649 (2005). crossref(new window)

D. Kim and J. Moon, Electrochem. Solid-State Lett., 8, J30 (2005). crossref(new window)

C. A. Di, G. Yu, Y. Liu, Y. Guo, Y. Wang, W. Wu and D. Zhu, Adv. Mater., 20, 1286 (2008). crossref(new window)

Y. Lee, J. R. Choi, K. Lee, N. E. Stott and D. Kim, Nanotechnology, 19, 415604 (2008). crossref(new window)

J. Ryu, H.-S. Kim and H. T. Hahn, J. Electron. Mater., 40, 42 (2011). crossref(new window)

C.-J. Wu, S.-M. Chen, Y.-J. Shenga and H.-K. Tsao, J. Taiwan Inst. Chem. Eng., 45, 2719 (2014). crossref(new window)

M. L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen and H. Seppä, Nanotechnology, 19, 175201 (2008). crossref(new window)

H.-S. Kim, S. R. Dhage, D.-E. Shim and H. T. Hahn, Appl. Phys. A: Mater. Sci. Process., 97, 791 (2009). crossref(new window)

M. Zenou, O. Ermak, A. Saar and Z. Kotler, J. Phys. D:Appl. Phys., 47, 025501 (2014). crossref(new window)

S. M. Yoon, J. Jo and K. Y. Kim, J. Korean Soc. Precis. Eng., 31, 505 (2014). crossref(new window)

N.-R. Kim, J.-H. Lee, S.-M. Yi and Y.-C. Joo, J. Electrochem. Soc., 158, K165 (2011). crossref(new window)