Advanced SearchSearch Tips
Effects of Powder Melting Degree on Microstructural Features of Plasma Sprayed Y2O3 Coating
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Powder Melting Degree on Microstructural Features of Plasma Sprayed Y2O3 Coating
Kang, Sang-Woon; Baik, Kyeong-Ho;
  PDF(new window)
In this study, the degree of particle melting in plasma spraying and its effects on coating characteristics have been investigated in terms of microstructural features, microhardness and scratch resistance. Plasma sprayed coatings were formed using two different powder feeding systems: a system in which the powder is fed inside the plasma gun and a system in which the powder is fed externally. The internal powder spraying method generated a well-defined lamellae structure that was characterized by a thin porous layer at the splat boundary and microcracks within individual splats. Such micro-defects were generated by the large thermal contraction of splats from fully-molten droplets. The external powder spraying method formed a relatively dense coating with a particulate deposition mode, and the deposition of a higher fraction of partially-melted droplets led to a much reduced number of inter-splat pores and intra-splat microcracks. The microhardness and scratch resistance of the coatings were improved by external powder spraying; this result was mainly attributed to the reduced number of micro-defects.
;plasma spraying;powder melting;inter-splat pore;scratch resistance;
 Cited by
A. J. Van Roosmalen, J. A. G. Baggerman and S. J. H. Brader, Dry Etching for VLSI, p.99, Plenum Press, New York (1991).

R. Doering and Y. Nishi, Handbook of Semiconductor Manufacturing Technology, p.21, CRC Press, New York (2008).

D. M. Kim, K. B. Kim, S. Y. Yoon, Y. S. Oh, H. T. Kim and S. M. Lee, J. Ceram. Soc. Jpn., 117, 863 (2009). crossref(new window)

M. Kazuhiro, T. Norihatu and S. Koichi, J. Vac. Sci. Technol. A, 27, 831 (2009).

R. Ramos, G. Cunge, B. Pelissier and O. Joubert, Plasma Sources Sci. Technol., 16, 711 (2007). crossref(new window)

D. M. Kim, S. Y. Yoon, K. B. Kim, H. S. Kim, Y. S. Oh and S. M. Lee, J. Korean Ceram. Soc. (in Korean), 45, 707 (2008). crossref(new window)

D. M. Kim, Y. S. Oh, S. W. Kim, H. T. Kim, D. S. Lim and S. M. Lee, Thin Solid Films, 519, 6698 (2011). crossref(new window)

S. Beauvais, V. Guipont, F. Borit, M. Jeandin, M. Espanol, K. A. Khor, A. Robisson and R. Saenger, Surf. Coat. Technol., 183, 204 (2004). crossref(new window)

M. Tului, G. Marino and T. Valente, Surf. Coat. Technol., 201, 2103 (2006). crossref(new window)

H. K. Seok, E. Y. Choi, P. R. Cha, M. C. Son and B. Choi, Surf. Coat. Technol., 205, 3341 (2011). crossref(new window)

J. Kitamura, H. Ibe, F. Yuasa and H. Mizuno, J. Therm. Spray Soc., 17, 878 (2008). crossref(new window)

I. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara and K. Uematsu, J. Am. Ceram. Soc., 90, 2327 (2007). crossref(new window)

K. Y. Choi, Y. S. Oh, S. Kim and S. M. Lee, Ceram. Int., 39, 1209 (2013). crossref(new window)

D. H. Riu, S. W. Lee, Y. K. Jeong and S. C. Choi, Key Eng. Mater., 264-8, 601 (2004).

T. Gougousi and Z. Chen, Thin Solid Films. 516, 6197 (2008). crossref(new window)

T. Watanabe, M. Kondo, T. Nagasaka, and A. Sagara, J. Plasma Fusion Res., 9, 342 (2010).

M. Berkowski, P. Bowen, T. Liechti and H. J. Scheel, J. Am. Ceram. Soc., 75, 1005 (1992). crossref(new window)

L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, p.28-50, John Wiley & Sons, New York (1995).

K. H. Baik, P. S. Grant and B. Cantor, Acta Mater., 52, 199 (2004). crossref(new window)

P. Fauchais, J. Phys. D: Applied Physics, 37, R86 (2004). crossref(new window)

C. Li, C. Li and M. Wang, Surf. Coat. Technol., 198, 278 (2005). crossref(new window)

H. Y. Lee and K. H. Baik, Met. Mater. Int., 15, 783 (2009). crossref(new window)

W. S. So and K. H. Baik, Korean J. Mater. Res. (in Korean), 21, 106 (2011). crossref(new window)