Advanced SearchSearch Tips
Electrode Properties for Water Electrolysis of Hydrophilic Carbon Paper with Thermal Anneal
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electrode Properties for Water Electrolysis of Hydrophilic Carbon Paper with Thermal Anneal
Yoo, Il-Han; Seo, Hyungtak;
  PDF(new window)
Hydrogen is considered a potential future energy source. Among other applications of hydrogen, hydrogen-rich water is emerging as a new health care product in industrial areas. Water electrolysis is typically used to generate a hydrogen rich water system. We annealed 10AA carbon paper in air to use it as an electrode of a hydrogen rich water generator. Driven by annealing, structural changes of the carbon paper were identified by secondary electron microscope analysis. Depending on the various annealing temperatures, changes of the hydrophilic characteristics were demonstrated. The crystal structures of pristine and heat-treated carbon paper were characterized by X-ray diffraction. Improvement of the efficiency of the electrochemical oxygen evolution reaction was measured via linear voltammetry. The optimized annealing temperature of 10AA carbon paper showed the possibility of using this material as an effective hydrogen rich water generator.
carbon paper;water electrolysis;carbon electrode;oxygen evolution reaction;
 Cited by
X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 110, 6503 (2010). crossref(new window)

H. Gu, Z. Wang and Y. Hu, Sensors, 12, 5517 (2012). crossref(new window)

B. Rausch, M. D. Symes and L. Cronin, J. Am. Chem. Soc., 135, 13656 (2013). crossref(new window)

M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang and H. Dai, Nat. Commun., 5 4695 (2014). crossref(new window)

G. W. Crabtree, M. S. Dresselhaus and M. V. Buchanan, Phys. Today, 57, 39 (2004). crossref(new window)

I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K.-i. Katsura, Y. Katayama, S. Asoh and S. Ohta, Nat. Med., 13, 688 (2007). crossref(new window)

S. Ohta, Pharmacol. Therapeut., 144, 1-11 (2014). crossref(new window)

Z. D. Wei, M. B. Ji, S. G. Chen, Y. Liu, C. X. Sun, G. Z. Yin, P. K. Shen and S. H. Chan, Electrochim. Acta, 52, 3323 (2007). crossref(new window)

P. K. Dubey, A. S. K. Sinha, S. Talapatra, N. Koratkar, P. M. Ajayan and O. N. Srivastava, Int. J. Hydrogen Energy, 35, 3945 (2010). crossref(new window)

P. P. Prosini, A. Pozio, S. Botti and R. Ciardi, J. Power Sourc., 118, 265 (2003). crossref(new window)

H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E. L. G. Samuel, P. M. Ajayan and J. M. Tour, ACS Nano, 8, 10837 (2014). crossref(new window)

S. C. Barton, Y. Sun, B. Chandra, S. White and J. Hone, Electrochem. Solid-State Lett., 10, B96 (2007). crossref(new window)

A. Tamayol, F. McGregor and M. Bahrami, J. Power Sourc., 204, 94 (2012). crossref(new window)

D. Reyter, D. Belanger and L. Roue, Water Res., 44, 1918 (2010). crossref(new window)

K. J. Kim, Y.-J. Kim, J.-H. Kim and M.-S. Park, Mater. Chem. Phys., 131, 547 (2011). crossref(new window)

L. Dobiasova, V. Stary, P. Glogar and V. Valvoda, Carbon, 37, 421 (1999). crossref(new window)