Advanced SearchSearch Tips
Fabrication of Octahedral Co3O4/Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication of Octahedral Co3O4/Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells
An, HyeLan; An, Geon-Hyoung; Ahn, Hyo-Jin;
  PDF(new window)
Octahedral /carbon nanofiber (CNF) composites are fabricated using electrospinning and hydrothermal methods. Their morphological characteristics, chemical bonding states, and electrochemical properties are used to demonstrate the improved photovoltaic properties of the samples. Octahedral grown on CNFs is based on metallic Co nanoparticles acting as seeds in the CNFs, which seeds are directly related to the high performance of DSSCs. The octahedral /CNFs composites exhibit high photocurrent density (), superb fill factor (62.1 %), and excellent power conversion efficiency (5.61 %) compared to those characteristics of commercial , conventional CNFs, and metallic Co-seed/CNFs. These results can be described as stemmnig from the synergistic effect of the porous and graphitized matrix formed by catalytic graphitization using the metal cobalt catalyst on CNFs, which leads to an increase in the catalytic activity for the reduction of triiodide ions. Therefore, octahedral /CNFs composites can be used as a counter electrode for Pt-free dye-sensitized solar cells.
dye-sensitized solar cells;counter electrode;Pt-free;octahedral ;carbon nanofibers;
 Cited by
M. Gratzel, Nature, 414, 338 (2001). crossref(new window)

N-G. Park, J. Korean Ind. Eng. Chem., 15, 265 (2004).

J-Y. Lin, J-H. Liao and T-C. Wei, Electrochem. Solid-State Lett., 14, D41 (2011). crossref(new window)

J-L. Lan, Y-Y. Wang, C-C. Wan, T-C. Wei, H-P. Feng, C. Peng, H-P. Cheng, Y-H. Chang and W-C. Hsu, Curr. Appl. Phys., 10, S168 (2010). crossref(new window)

S. Yun, A. Hagfeldt and T. Ma, Adv. Mater., 26, 6210 (2014). crossref(new window)

M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Gratzel and T. Ma, J. Am. Chem. Soc., 134, 3419 (2012). crossref(new window)

S. Thomas, T. G. Deepak, G. S. Anjusree, T. A. Arun, S. V. Nair and A. S. Nair, J. Mater. Chem. A, 2, 4474 (2014). crossref(new window)

T. N. Murakami and M. Gratzel, Inorg. Chim. Acta., 361, 572 (2008). crossref(new window)

A. Kay and M. Gratzel, Sol. Energ. Mat. Sol. Cells, 44, 99 (1996). crossref(new window)

P. Joshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey and Q. Qiao, Energy Environ. Sci., 2, 426 (2009). crossref(new window)

T. Okumura, T. Sugiyo, T. Inoue, M. Ikegami and T. Miyasaka, J. Electrochem. Soc., 160, H155 (2013). crossref(new window)

H. An, G-H. An and H-J. Ahn, J. Ceram. Process. Res., 16, 208 (2015).

M. Chen, L-L. Shao, X. Qian, T-Z. Ren and Z-Y. Tuan, J. Mater. Chem. C, 2, 10312 (2014). crossref(new window)

C. Tan, G. Zhu, M. Hojamberdiev, K. Okada, J. Liang, X. Luo, P. Liu and Y. Liu, Appl. Catal. B: Environ., 152-153, 425 (2014).

J. W. Ko, W-H. Ryu, I-D. Kim and C. B. Park, Chem. Commun., 49, 9725 (2013). crossref(new window)

P. Ramakrishnan and S. Shanmugam, Electrochim. Acta, 125, 232 (2014). crossref(new window)

Y. Aykut, ACS Appl. Mater. Interfaces, 4, 3405 (2012). crossref(new window)

G-H. An and H-J. Ahn, J. Power Sourc., 272, 828 (2014). crossref(new window)

X. Xiao, X. Liu, H. Zhao, D. Chen, F. Liu, J. Xiang, Z. Hu and Y. Li, Adv. Mater., 24, 5762 (2012). crossref(new window)

Y. Xiao, G. Han, H. Zhou, Y. Li and J-Y. Lin, Electrochim. Acta, 155, 103 (2015). crossref(new window)

H-M. Chuang, C-T. Li, M-H. Yeh, C-P. Lee, R. Vittal and K-C. Ho, J. Mater. Chem. A, 2, 5816 (2014). crossref(new window)

M. Gratzel, Inorg. Chem., 44, 6841 (2005). crossref(new window)

J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, J. Power Sourc., 181, 172 (2008). crossref(new window)

J. Gong, J. Liang and K. Sumathy, Renew. Sustain. Energ. Rev., 16, 5848 (2012). crossref(new window)