JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrochemical Properties of Fluorine-Doped Tin Oxide Nanoparticles Using Ultrasonic Spray Pyrolysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electrochemical Properties of Fluorine-Doped Tin Oxide Nanoparticles Using Ultrasonic Spray Pyrolysis
Lee, Do-Young; Lee, Jung-Wook; An, Geon-Hyoung; Riu, Doh-Hyung; Ahn, Hyo-Jin;
  PDF(new window)
 Abstract
Fluorine-doped tin oxide (FTO) nanoparticles have been successfully synthesized using ultrasonic spray pyrolysis. The morphologies, crystal structures, chemical bonding states, and electrochemical properties of the nanoparticles are investigated. The FTO nanoparticles show uniform morphology and size distribution in the range of 6-10 nm. The FTO nanoparticles exhibit excellent electrochemical performance with high discharge specific capacity and good cycling stability ( capacity retention up to 50 cycles), as well as excellent high-rate performance ( at ) compared to that of commercial . The improved electrochemical performance can be explained by two main effects. First, the excellent cycling stability with high discharge capacity is attributed to the nano-sized FTO particles, which are related to the increased electrochemical active area between the electrode and electrolyte. Second, the superb high-rate performance and the excellent cycling stability are ascribed to the increased electrical conductivity, which results from the introduction of fluorine doping in . This noble electrode structure can provide powerful potential anode materials for high-performance lithiumion batteries.
 Keywords
Li-ion battery;anode;fluorine-doped tin oxide;ultrasonic spray pyrolysis;nanoparticles;
 Language
Korean
 Cited by
 References
1.
V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011). crossref(new window)

2.
M. Armand and J. M. Tarascon, Nature, 451, 653 (2008).

3.
E. J. Kim and H. C. Shin, Korean J. Mater. Res., 22, 8 (2012). crossref(new window)

4.
J. W. Lee, W. S. Choi and H. C. Shin, Korean J. Mater. Res., 23, 680 (2013). crossref(new window)

5.
E. Kim, S. H. Kwon, M. S. Kim and J. C. Jung, Korean J. Mater. Res., 24, 243 (2014). crossref(new window)

6.
L. Ji, Z. Lin, M. Alcoutlabi and X. Zhang, Energy Environ. Sci., 4, 2682 (2011). crossref(new window)

7.
G. H. An, J. I. Sohn and H. J. Ahn, J. Mater. Chem. A., 4, 2049 (2016). crossref(new window)

8.
G. H. An and H. J. Ahn, J. Power Sourc., 272, 828 (2014). crossref(new window)

9.
B. Simon, S. Flandrois, K. Guerin, A. F. Bouvier, I. Teulat and P. Biensan, J. Power Sourc., 81-82, 312 (1999). crossref(new window)

10.
F. Cheng, J. Liang, Z. Tao and J. Chen, Adv. Mater., 23, 1695 (2011). crossref(new window)

11.
C. M. Park, J. H. Kim, H. Kim and H. J. Sohn, Chem. Soc. Rev., 39, 3115 (2010). crossref(new window)

12.
G. H. An, S. J. Kim, K. W. Park and H. J. Ahn, ECS Solid-State Lett., 3, 21 (2014).

13.
B. H. Li, Z. Wang, L. Chen and X. Huang, Adv. Mater., 21, 4593 (2009). crossref(new window)

14.
B. R, Koo, G. H. An and H. J. Ahn, J. Korean Powd. Met. Inst., 21, 108 (2014). crossref(new window)

15.
C. W. Kwon, G. Campet, J. Portier, A. Poquet, L. Fournes, C. Labrugere, B. Jousseaume, T. Toupance, J. H. Choy and M. A. Subramanian, Int. J. Inorg. Mater., 3, 211 (2001). crossref(new window)

16.
M. Kim, B. R. Koo, H. J. Ahn and T. K. Lee, Korean J. Master. Res., 25, 125 (2015). crossref(new window)

17.
S. I. Noh, H. J. Ahn and D. H. Riu, Ceram. Int., 38, 3735 (2012). crossref(new window)

18.
H. W. Ha, K. Kim, M. de Borniol and T. Toupance, J. Solid State Chem., 179, 702 (2006). crossref(new window)

19.
S. L. dos Santos e Lucato, Lince - Linear Intercept v. 2.4, (Department of Material Science, Darmstadt University of Technology, 1999).

20.
C. Hudaya, B. Kang, H. G. Jung, W. Choi, B. J. Jeon and J. K. Lee, Carbon, 81, 835 (2015). crossref(new window)