JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Precursor Ratio on the Properties of Inorganic-Organic Hybrid TiO2-SiO2 Coating
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Precursor Ratio on the Properties of Inorganic-Organic Hybrid TiO2-SiO2 Coating
Kim, Dong Kyu; Maeng, Wan Young;
  PDF(new window)
 Abstract
When a single inorganic precursor is used for the synthesis of a sol-gel coating, there is a problem of cracking on the surface of coating layer. In order to solve this problem of surface cracking, we synthesized inorganic-organic coatings that have hybrid properties of inorganic and organic materials. Sols of various ratios (1:0.07, 0.2, 0.41, 0.82, 1.64, 3.26, 6.54, 13.2) of an inorganic precursor of Tetrabutylorthotitanate (, TBOT) and an organic precursor of -Methacryloxy propyltrimethoxysilane (MAPTS) were prepared and coated on stainless steels (SUS316L) by dip coating method. The binding structure and the physical properties of the synthesized coatings were analyzed by FT-IR, FE-SEM, FIB (Focused Ion Beam), and a nano-indenter. Dynamic polarization testing and EIS (electrical impedance spectroscopy) were carried out to evaluate the micro-defects and the corrosion properties of the coatings. The prepared coatings show hybrid properties of inorganic oxides and organic materials. Crack free coatings were prepared when the MAPTS ratio was above a critical value. As the MAPTS ratio increased, the thickness and the corrosion resistance increased, and the hardness decreased.
 Keywords
sol-gel;inorganic-organic hybrid coatings;nanoindenter;dynamic polarization test;EIS;
 Language
Korean
 Cited by
 References
1.
D. H. Son, Y. Y. Lee, S. J. Kim, S. S. Hong, G. D. Lee and S. S. Park, Appl. Chem. Eng., 22, 691 (2011).

2.
S. H. Jang, Polymer Sci. Tech., 12, 676 (2001).

3.
D. H. Son, D. S. Kim, S. H. Lee, S. H. Kim, G. D. Lee and S. S. Park, Appl. Chem. Eng., 23, 53 (2012).

4.
S. K. Oh, J. S. Chung, B. S. Lee and K. C. Song, Korean J. Chem. Eng. Res., 46, 274 (2008).

5.
J. H. Han, Machine Mater., 17, 40 (2005).

6.
S. H. Lee. Master's Thesis, p35-65, Kyunghee University, Seoul (2008).

7.
J. Strunk, W. C. Vining, and A. T. Bell, J. Phys. Chem., 114, 16937 (2010).

8.
V. A. Zeitler and C. A. Brown, J. Phys. Chem., 61, 1174 (1957). crossref(new window)

9.
A. Pirson, A. Mohsine, P. Marchot, B. Michaux, O. V. Cantfort and J. P. Pirard, J. Sol-Gel Sci. Tech., 4, 179 (1995). crossref(new window)

10.
C. F. Song, M. K. Lu, P. Yang, D. Xu and D. R. Yuan, Thin Solid Films, 413, 155 (2002). crossref(new window)

11.
Y. S. Song. Master's Thesis, p19, Hanyang University, Seoul (2003).

12.
H. Yaghoubi, N. Taghavinia, E. K. Alamdari and A. A. Volinsky, ACS Appl. Mater. Interfaces, 2, 2629 (2010). crossref(new window)

13.
D. Kaczmarek, J. Domaradzki, D. Wojcieszak, E. Prociow, M. Mazur, F. Placido and S. Lapp, J. Nano Res., 18-19, 195 (2012). crossref(new window)

14.
B J Briscoe, L Fiori and E Pelillo, J. Phys. D Appl. Phys., 31, 2395 (1998). crossref(new window)

15.
J. H. W. de Wit in "Corrosion Mechanisms in Theory and Practive", P. Marcus and J. Oudar, Eds., p. 581, Marcel Dekker, New York (1995).

16.
F, Mansfeld, J. Appl. Electrochem., 25, 187 (1995).

17.
F. Mansfeld, Electrochim. Acta., 38, 1891 (1993). crossref(new window)

18.
Marie-Georges Olivier and Mireille Poelman(2012). "Use of Electrochemical Impedance Spectroscopy (EIS) for the Evaluation of Electrocoatings Performances", Recent Researches in Corrosion Evaluation and Protection, Prof. Reza Shoja Razavi(Ed.), ISBN:978-953-307-920-2, InTech.