JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Adsorption of Mercury(II) Chloride and Carbon Dioxide on Graphene/Calcium Oxide (0 0 1)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Adsorption of Mercury(II) Chloride and Carbon Dioxide on Graphene/Calcium Oxide (0 0 1)
Mananghaya, Michael; Yu, Dennis; Santos, Gil Nonato; Rodulfo, Emmanuel;
  PDF(new window)
 Abstract
In this work, recent progress on graphene/metal oxide composites as advanced materials for and capture was investigated. Density Functional Theory calculations were used to understand the effects of temperature on the adsorption ability of and water vapor on adsorption on CaO (001) with reinforced carbon-based nanostructures using B3LYP functional. Understanding the mechanism by which mercury and adsorb on graphene/CaO (g-CaO) is crucial to the design and fabrication of effective capture technologies. The results obtained from the optimized geometries and frequencies of the proposed cluster site structures predicted that with respect to molecular binding the system possesses unusually large ( sorbent) and ( sorbent) uptake capacities. The and were found to be stable on the surface as a result of the topology and a strong interaction with the g-CaO system; these results strongly suggest the potential of CaO-doped carbon materials for and capture applications, the functional gives reliable answers compared to available experimental data.
 Keywords
adsorption;computer modeling and simulation;desorption;nanostructures;
 Language
English
 Cited by
1.
Hydrogen adsorption on boron nitride nanotubes functionalized with transition metals, International Journal of Hydrogen Energy, 2016, 41, 31, 13531  crossref(new windwow)
 References
1.
H. J. Freund and V. Staemmler, Rep. of Prog. in Phys., 59, 283 (1996). crossref(new window)

2.
G. Pacchioni, Surface Rev. Lett., 7, 277 (2000).

3.
C. Noguera, Surface Rev. Lett., 8, 121 (2001).

4.
P. Broqvist and I. Panas, Surface Sci., 554, 262 (2004). crossref(new window)

5.
S. P. Decker, A. Khaleel and K. Klabunde, J. Environ. Sci. Technol., 36, 762 (2002). crossref(new window)

6.
A. Gross, Surface Sci., 500, 347 (2002). crossref(new window)

7.
R. A. Van santen, J. Chem. Rev., 95, 637 (1995). crossref(new window)

8.
R. A. Van santen, Catalyts Rev. Sci. Eng., 37, 557 (1995). crossref(new window)

9.
B. K. Rao, J. Chem. Phys., 116, 1343 (2002). crossref(new window)

10.
G. L. Gutsev and P. Jena, J. Phys. Chem. A, 104, 5374 (2002).

11.
G. Pacchioni and F. Illas, J. Am. Chem. Soc., 116, 10152 (1994). crossref(new window)

12.
F. Bawa, Phys. Chem. Chem. Phys., 3, 3042 (2001). crossref(new window)

13.
E. J. Karlsen and L. G. M. Pettersson, J. Phys. Chem. B, 107, 7795 (2003). crossref(new window)

14.
C. Di Valentin and G. Pacchioni, Surface Sci., 556, 145 (2004). crossref(new window)

15.
M. B. Jensen, O. Swang and U. Olsbye, J. Phys. Chem. B, 109, 16774 (2005). crossref(new window)

16.
J. Rogal, Fachbereich Physik, Freie Universitat Berlin (2006).

17.
W. Kolodziejczyk, S. Roszak and Leszczynski, J. Chem. Phys. Lett., 450, 138 (2007). crossref(new window)

18.
I. V. Lightcap, T. H. Kosel and P. V. Kamat, Nano. Lett., 10, 577 (2010). crossref(new window)

19.
A. D. Becke, Phys. Rev. A, 38, 3098 (1988). crossref(new window)

20.
R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955). crossref(new window)

21.
F. D'Souza, M. E. Zandler, P. M. Smith, G. R. Deviprasad, K. Arkady, M. Fujitsuka and O. Ito, J. Phys. Chem. A, 106, 649 (2002). crossref(new window)

22.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis and J. A. Montgomery Jr. J. Comp. Chem., 14, 1347 (1993). crossref(new window)

23.
J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 105, 2999 (2005). crossref(new window)

24.
L. Onsager and J. Amer. Chem. Soc., 58, 1486 (1936). crossref(new window)

25.
E. Cances and B. Mennucci, J. Mathem. Chem., 23, 309 (1998). crossref(new window)

26.
E. Cances, B. Mennucci and J. J. Tomasi, Chem. Phys., 107, 3032 (1997).

27.
D. Loffreda, Surface Sci., 600, 2103 (2006). crossref(new window)

28.
N. M. O'Boyle, A. L. Tenderholt and K. M. J. Langner, Comp. Chem., 29, 839 (2008). crossref(new window)

29.
B. M. Bode and M. S. Gordon, J. Mol. Graphics Mod., 16, 133 (1998). crossref(new window)

30.
C. Claudio and A. S. Stephen, Dalton trans., 42, 4670 (2013). crossref(new window)

31.
S. P. Decker, A. Khaleel and K. J. Klabunde, Environ. Sci. Technol., 36, 762 (2002). crossref(new window)

32.
M. Mananghaya, J. Chem. Sci., 127, 751 (2015). crossref(new window)

33.
M. Mananghaya, Bull. Korean Chem. Soc., 35, 253 (2014). crossref(new window)

34.
M. Mananghaya, J. Korean Chem. Soc., 56, 34 (2012). crossref(new window)

35.
M. Mananghaya, Int. J. Hydrog. Energy, 40, 9352 (2015). crossref(new window)

36.
M. Mananghaya, J. Korean Chem. Soc., 59, 429 (2015). crossref(new window)

37.
M. Mananghaya, M. J. Chem. Sci., 126, 1737 (2014). crossref(new window)

38.
M. Mananghaya, E. Rodulfo and G. N. Santos, J. Nanotechnol., 2012, 780815 (2012).

39.
M. Mananghaya, E. Rodulfo and G. N. Santos, J. Nanomater., 2012, 104891 (2012).

40.
M. Mananghaya, J. Mol. Liq., 212, 592 (2015). crossref(new window)

41.
S. F. Rastegar, A. A. Peyghan and N. L. Hadipour, App. Surf. Sci., 265, 412 (2013). crossref(new window)

42.
M. Pashangpour and A. A. Peyghan, J. Mol. Modeling, 21, 1 (2015). crossref(new window)

43.
A. A. Peyghan, M. Noei, M. B. Tabar. J. mol. model., 19, 3007 (2013). crossref(new window)

44.
M. Mananghaya, M. Promentilla, K. Aviso and R. Tan, J. Mol. Liq., 215, 780 (2016). crossref(new window)

45.
M. Mananghaya, D. Yu, G. N. Santos and E. Rodulfo, Int. J. Hydrogen Energy http://dx.doi.org/10.1016/j.ijhydene.2016.05.225 (2016).

46.
M. Mananghaya, D. Yu, G. N. Santos and E. Rodulfo, Sci. Rep. 6, 27370; doi:10.1038/srep27370 (2016). crossref(new window)

47.
M. Mananghaya, A. Beltran and L. P. Belo, Mater. Chem. Phys. http://dx.doi.org/10.1016/j.matchemphys.2016.06.018 0254-0584 (2016).