JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Enviroment-Friendly Synthesis of Nanocrystalline Zinc Oxide Particles Using Fruit Peel Extract
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Enviroment-Friendly Synthesis of Nanocrystalline Zinc Oxide Particles Using Fruit Peel Extract
Yuvakkumar, R.; Song, Jae Sook; Shin, Pyung Woo; Hong, Sun Ig;
  PDF(new window)
 Abstract
In this study, an environment-friendly synthetic strategy to process zinc oxide nanocrystals is reported. The biosynthesis method used in this study is simple and cost-effective, with reduced solvent waste via the use of fruit peel extract as a natural ligation agent. The formation of ZnO nanocrystals using a rambutan peel extract was observed in this study. Rambutan peels has the ability to ligate zinc ions as a natural ligation agent, resulting in ZnO nanochain formation due to the presence of an extended polyphenolic system over the whole incubation period. Via transmission electron microscopy, successful formation of zinc oxide nanochains was confirmed. TEM observation revealed that the bioinspired ZnO nanocrystals were spherical and/or hexagonal particles with sizes between 50 and 100 nm.
 Keywords
green synthesis;zinc oxide;fruit peel waste;nanocrystal;
 Language
Korean
 Cited by
 References
1.
S. Iravani, Green Chem., 13, 2638 (2011). crossref(new window)

2.
J. M. Patete, X. Peng, C. Koenigsmann, Y. Xu, B. Karnb and S. S. Wong, Green Chem., 13, 482 (2011). crossref(new window)

3.
S. Wenda, S. Illner, A. Mell and U. Kragl, Green Chem., 13, 3007 (2011). crossref(new window)

4.
Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi and T. Uruga, J. Biotechnol., 128, 648 (2007). crossref(new window)

5.
S. K. Das, C. Dickinson, F. Lafir, D. F. Brougham and E. Marsili, Green Chem., 14, 1322 (2012). crossref(new window)

6.
S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad and M. Sastry, Biotechnol. Prog., 22, 577 (2006). crossref(new window)

7.
D. Philip, Phys. E, 42, 1417 (2010). crossref(new window)

8.
S. Y. Chu, T. M. Yan and S. L. Chen, J. Mater. Sci. Lett., 19, 349 (2000). crossref(new window)

9.
M. S. Tokumoto, V. Briois and C. V. Santilli, J. Sol-Gel Sci. Technol., 26, 547 (2003). crossref(new window)

10.
J. H. Kim, W. C. Choi, H. Y. Kim, Y. Kang and Y.-K. Park, Powder Technol., 153, 166 (2005). crossref(new window)

11.
L. C. Damonte, L. A. Mendoza Zelis, B. Mari Soucase and M. A. Hernandez Fenollosa, Powder Technol., 148, 15 (2004). crossref(new window)

12.
M. L. Kahn and M. Monge, Adv. Funct. Mater., 3, 458 (2005).

13.
S. Kamarnen, M. Bruno and E. Mariani, Mater. Res. Bull., 35, 1843 (2000). crossref(new window)

14.
X. Zhao, B. Zheng, C. Li and H. Gu, Powder Technol., 100, 20 (1998). crossref(new window)

15.
T. Tani, L. Madler and S. E. Pratsinis, J. Nanoparticle Res., 4, 337 (2002). crossref(new window)

16.
Z. R. Dai, Z.W. Pan and Z L. Wang, Adv. Funct. Mater., 13, 9 (2003). crossref(new window)

17.
W. Q. Ao, J. Q. Li, H. M. Yang, X. R. Zeng and X. C. Ma, Powder Technol., 168, 148 (2006). crossref(new window)

18.
D. Yu, R. Cai and Z. Liu, Spectrochim. Acta A, 60, 1617 (2004). crossref(new window)

19.
M. L. Curri, R. Comparelli, P. D. Cozzli, G. Mascolo and A. Agostiano, Mater. Sci. Eng. C, 23, 285 (2003). crossref(new window)

20.
V. P. Kamat, R. Huehn and R. Nicolaescu, J. Phys. Chem. B, 106, 788 (2002). crossref(new window)

21.
H. M. Lin, S. J. Tzeng, P. J. Hsiau and W. L. Tsai, Nanostruct. Mater., 10, 465 (1998). crossref(new window)

22.
J. Xu, Q. Y. Pan, Y. A. Shun and Z. Z. Tian, Sens. Actuators B Chem., 66, 277 (2000). crossref(new window)

23.
Z. Hu, G. Oskam and P. C. Searson, J. Colloid Interface Sci., 263, 454 (2003). crossref(new window)

24.
S. J. Chen and L. H. Lia, J. Cryst. Growth, 252, 184 (2003). crossref(new window)

25.
A. K. Li and W. T. Wu, Key Eng. Mater., 247, 405 (2003). crossref(new window)

26.
J. Y. Song and B. S. Kim, Bioprocess Biosyst. Eng., 32, 79 (2009). crossref(new window)

27.
S. Gorinstein, M. Zemser, R. Haruenkit, R. Chuthakorn, F. Grauer, O. Martin Belloso and S. Trakhtenberg, J. Nutr. Biochem., 10, 367 (1999). crossref(new window)

28.
L. P. Leong and G. Shui, Food Chem., 76, 69 (2002). crossref(new window)

29.
U. Palanisamy, H. M. Cheng, T. Masilamani, T. Subramaniam, L. T. Ling and A. K. Radhakrishnan, Food Chem., 109, 54 (2008). crossref(new window)

30.
N. Thitilertdecha, A. Teerawutgulrag and N. Rakariyatham, LWT - Food Sci. Technol., 41, 2029 (2008). crossref(new window)

31.
T. C. Daman and S. P. S., Proto, B. Tell, Phys. Rev., 142, 570 (1966). crossref(new window)

32.
R. Y. Hong, J. H. Li, L. L. Chen, D. Q. Liu, H. Z. Li, Y. Zheng and J. Ding, Powder Technol., 189, 426 (2009). crossref(new window)

33.
X. B. Wang, K. F. Huo, F. Zhang, Z. Hu, P. K. Chu, H. S. Tao, Q. Wu, Y. M. Hu and J. M. Zhu, J. Phys. Chem. C, 113, 170 (2009).

34.
C. Jayaseelan, A. Abdul Rahuman, A. Vishnu Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik and K.V. Bhaskara Rao, Spectrochim. Acta A, 90, 78 (2012). crossref(new window)

35.
S. N. Barnaby, S. M. Yu, K. R. Fath, A. Tsiola, O. Khalpari and I. A. Banerjee, Nanotechnology, 22, 225605 (2011). crossref(new window)

36.
E. Koren, R. Kohen and I. A. Ginsburg, J. Agric. Food Chem., 57, 7644 (2009). crossref(new window)

37.
J. A. Jacob, H. S. Mahal, N. Biswas, T. Mukherjee and S. Kapoor, Langmuir. 24, 528 (2008). crossref(new window)

38.
M. McDonald, I. Mila and A. Scalbert, J. Agric. Food Chem., 44, 599 (1996). crossref(new window)

39.
S. K. Sivaraman, I. Elango, S. Kumar and V. Santhanam, Curr. Sci., 97, 1055 (2009).

40.
O. Yamamoto, J. Sawai and T. Sasamoto, Int. J. Inorg. Mater. 2, 451 (2000). crossref(new window)

41.
S. R. Przewloka and B. J. Shearer, Holzforschuang 56, 13 (2002).