JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Study on GZO Thin Films as Insulator, Semiconductor and Conductor Depending on Annealing Temperature
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Study on GZO Thin Films as Insulator, Semiconductor and Conductor Depending on Annealing Temperature
Oh, Teresa;
  PDF(new window)
 Abstract
To observe the bonding structure and electrical characteristics of a GZO oxide semiconductor, GZO was deposited on ITO glasses and annealed at various temperatures. GZO was found to change from crystal to amorphous with increasing of the annealing temperatures; GZO annealed at came to have an amorphous structure that depended on the decrement of the oxygen vacancies; increase the mobility due to the induction of diffusion currents occurred because of an increment of the depletion layer. The increasing of the annealing temperature caused a reduction of the carrier concentration and an increase of the bonding energy and the depletion layer; therefore, the large potential barrier increased the diffusion current dna the Hall mobility. However, annealing temperatures over promoted crystallinity by the defects without oxygen vacancies, and then degraded the depletion layer, which became an Ohmic contact without a potential barrier. So the current increased because of the absence of a potential barrier.
 Keywords
GZO;amorphous;XRD;PL spectra;capacitance;chemical shift;
 Language
Korean
 Cited by
 References
1.
D. S. Lee, D. J. Kim and H. J. Kim, Korean J. Mater. Res., 25, 238 (2015). crossref(new window)

2.
JOHN G. SIMMONS, Phys. Rev., 155, 657 (1967). crossref(new window)

3.
T. Oh and C. H. Kim, JNN. 16, 2096 (2016). crossref(new window)

4.
W. T. Chen, S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, C. H. Fang, and C. C. Lee, IEEE Electron. Dev. Lett., 32, 1552 (2011). crossref(new window)

5.
S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen and W. C. Wub, Solid-State Electron., 54, 1497 (2010). crossref(new window)

6.
G. Kenugapal and S. J. Kim, Curr. Appl. Phys., 11, S381 (2011). crossref(new window)

7.
J. S. Lee, Y. J. Kwack and W. S. Choi, J. Korean Phys. Soc., 59, 3305 (2011).

8.
T. Oh, EML. 11, 853 (2015).

9.
J. Maserjian, J. Vac. Sci. Technol. A, 11, 996 (1974). crossref(new window)

10.
K. Nomura, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, Appl. Phys. Lett., 93, 192107 (2008). crossref(new window)

11.
O. Mitrofanov and M. Mantra, J. Appl. Phys., 95, 6414 (2004). crossref(new window)

12.
T. Oh, Korean J. Mater. Res., 25, 1149 (2015).

13.
M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins and I. Ferreira, Appl. Phys. Lett., 95, 063502 (2009). crossref(new window)

14.
N. Zhang, Ke Yu, Q. Li, Z. Q. Zhu and Q. Wan, J. Appl. Phys., 103, 104305 (2008). crossref(new window)

15.
J. Heo, H. J. Kim, J. H. Han and J. W. Shon, Thin Solid Films, 515, 5035 (2007). crossref(new window)

16.
D. W. Jeong, J. J. Kim and J. O Lee, J. Korean Phys. Soc., 59, 3133 (2011). crossref(new window)

17.
T. Oh, Korean J. Mater. Res., 25, 347 (2015). crossref(new window)

18.
S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008). crossref(new window)

19.
D. Cha, S. Lee, J. Jung and I. An, J. Korean Phys. Soc., 56, 846 (2010). crossref(new window)