Advanced SearchSearch Tips
Synthesis and characterization Au doped TiO2 film for photocatalytic function
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Synthesis and characterization Au doped TiO2 film for photocatalytic function
Son, Jeong-Hun; Bae, Byung-Seo; Bae, Dong-Sik;
  PDF(new window)
Au doped nanoparticles have been synthesized using a reverse micelle technique combined with metal alkoxide hydrolysis and condensation. Au doped was coated with glass substrate. The size of the particles and thickness of the coating can be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TTIP within the micro-emulsion. The average size of synthesized Au doped nanoparticle was about in the size range of 15 to 25 nm and the Au particles formed mainly the range of 2 to 10 nm in diameter. The effect of synthesis parameters, such as the molar ratio of water to TTIP and the molar ratio of water to surfactant, are discussed. The synthesized nanopaticles were coated on glass substrate by a spin coating process. The thickness of thin film was about 80 nm. The degradation of MB on a thin film was enhanced over 20 % efficiency by the incorporation of Au.
Au doped ;Photocatalyst;Thin film;Reverse Micelle and Sol-Gel Process;
 Cited by
A. Fujishima and X. Zhang, ''Titanium dioxide photocatalysis: Present situation and future approaches'', C. R. Chim. 9 (2006) 750. crossref(new window)

X. Chen and S.S. Mao, ''Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications'', Chem. Rev. 107 (2007) 2891. crossref(new window)

J.L. Gole, J.D. Stout, C. Burda, Y. Lou and X. Chen, "Highly efficient formation of visible light tunable $TiO_{2-x}N_x$ Photocatalysts and Their Transformation at the Nanoscale", J. Phys. Chem. B 108 (2004) 1230. crossref(new window)

A. Mills, G. Hill, S. Bhopal, I.P. Parkin and S.A. O'Neil, "Thick titanium dioxide films for semiconductor photocatalysis", J. Photochem. Photobiol., A 160 (2003) 185. crossref(new window)

G.E. Brown, V.E. Henrich, W.H. Casey, D.L. Clark, C. Eggleston, A. Femly, D.W. Goodman, M. Gratzel, G. Macial, M.I. McGarthy, K.H. Nealson, D.A. Sverjensky, M.F. Toney and J.M. Zachara, "Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms", Chem. Rev. 99 (1999) 77. crossref(new window)

S.A. Bilmes, P. Mandelbaum, F. Alvarez and N.M. Victoria, "Surface and electronic structure of titanium dioxide photocatalysts", J. Phys. Chem. 104 (2000) 9851. crossref(new window)

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides", Science 293 (2001) 269. crossref(new window)

Y. Sakatani, K. Okusako, H. Koike and H. Ando, "Development of $TiO_2$ photocatalysis with visible light response", Photocatalysis 4 (2002) 51.

H. Irie, Y. Watanabe and K. Hashimoto, "Nitrogen-concentration dependence on photocatalytic activity of $TiO_{2-x}N_x$ Powders", J. Phys. Chem. B 107 (2003) 5483. crossref(new window)

K. Kobayakawa, Y. Murakami and Y. Sato, "Visiblelight active N-doped $TiO_2$ prepared by heating of titanium hydroxide and urea", J. Photochem. Photobiol., A 170 (2005) 177. crossref(new window)

D. Wang, H. Lin and C. Yen, "Influence of metal plasma ion implantation on photo-sensitivity of anatase $TiO_2$ thin films", Thin Solid Films 515 (2006) 1047. crossref(new window)

M. Anpo, "Photocatalysis on titanium oxide catalysts: Approaches in achieving highly efficient reactions and realizing the use of visible light", Catal. Surv. Jpn. 1 (1997) 169. crossref(new window)

J. Hodak, C. Quinteros, M.I. Litter and E. San Roman, "Sensitization of $TiO_2$ with phthalocyanines. Part 1. Photo-oxidations using hydroxoaluminium tricarboxymonoamid-ephthalocyanine adsorbed on $TiO_2$", J. Chem. Soc., Faraday Trans. 92 (1996) 5081. crossref(new window)

Y. Cho, C.H. Lee, T. Hyeon and H.I. Lee, "Visible light-induced degradation of carbon tetrachloride on dye-sensitized $TiO_2$", Environ. Sci. Technol. 35 (2001) 966. crossref(new window)

D. Chatterjee and A. Mahata, "Demineralization of organic pollutants on the dye modified $TiO_2$ semiconductor particulate system using visible light", Appl. Catal., B 33 (2001) 119. crossref(new window)

E. Bae, W. Choi, J. Park, H.S. Shin, S.B. Kim and J.S. Lee, "Effects of surface anchoring groups (carboxylate vs phosphonate) in ruthenium-complex-sensitized $TiO_2$ on visible light reactivity in aqueous suspensions", J. Phys. Chem. B 108 (2004) 14093. crossref(new window)

H. Fu, L. Zhang, S. Zhang, Y. Zhu and J. Zhao, "Electron spin resonance spin-trapping detection of radical intermediates in N-doped $TiO_2$-assisted photodegradation of 4-chlorophenol", J. Phys. Chem. B. 110 (2006) 3061. crossref(new window)

K.W. Park, "Influence of Pt nanocrystallinity on electrochromism of $TiO_2$", Inorg. Chem. 44 (2005) 3190. crossref(new window)

J. Sa, M. Fernandez-Garcia and J.A. Anderson, "Photoformed electron transfer from $TiO_2$ to metal clusters", Catal. Commun. 9 (2008) 1991. crossref(new window)

Y.M. Tricot and J.H. Fendler, "In situ generated colloidal semiconductor CdS particles in dihexadecyl phosphate vesicles: Quantum size and asymmetry effects", J. Phys. Chem. 90 (1986) 3369. crossref(new window)

N. Ichinose, Y. Ozaki and S. Kashu, "Superfine particle technology", Springer-Verlag, New York (1988) 27.

D.S. Bae, K.S. Han and J.H. Adair, "Synthesis of nanosize $SiO_2$ particles by a reverse micelle and sol-gel processing", J. Korean Cryst. Growth Cryst. Technol. 11 (2001) 67.

J.W. Eun, D.K. Oh, K.J. Kim, T.U. Hong, S.M. Jeong, B.G. Choi and K.B. Shim, "Thermal stabilizing effect of $Yb^{3+}$ $Er^{3+}$ codoping into $TiO_2$ powder preparedby sol-gel method and its up conversion characteristic", J. Korean Cryst. Growth Cryst. Technol. 20 (2010) 173. crossref(new window)

J.H. Son, H.Y. Park, D.P. Kang and D.S. Bae, "Synthesis and characterization of Ag/Pd doped $SiO_2$ nanoparticles by a reverse micelle and sol-gel processing" Colloids and Surfaces A: Physicochem. Eng. 313 (2008) 105.

T. Li, J.J. Mecholsky, D.R. Talham and J.H. Adair, "Preparation of $Ag/SiO_2$ nanosize composites by a reverse micelle and sol-gel technique", Langmuir 15 (1999) 4328. crossref(new window)

S.W. Zhang, B.P. Zhang, S. Li, X.Y. Li and Z.C. Huang, "SPR enhanced photocatalytic properties of Au-dispersed amorphous $BaTiO_3$ nanocomposite thin films", J. Alloy Comp. 654 (2016) 112. crossref(new window)

N. Negishi and K. Takeuchi, "Structural changes of transparent $TiO_2$ thin films with heat treatment", Mater. Lett. 38 (1999) 150. crossref(new window)

J.H. Ryu, C.S. Lim, W.C. Oh and K.H. Auh, "Preparation of $TiO_2$ nanopowder using titanium terta-isopropoxide and effect of pH", J. Korean Cryst. Growth Cryst. Technol. 12 (2002) 91.

Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng and K. Wei, "Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis", Inorg. Chem. 46 (2007) 6980. crossref(new window)

T. Hirakawa and P.V. Kamat, "Charge separation and catalytic activity of Ag@$TiO_2$ core-shell composite clusters under UV-irradiation", J. Am. Chem. Soc. 127 (2005) 3928. crossref(new window)

S. Zhu, S. Liang, Q. Gu, L. Xie, J. Wang, Z. Ding and P. Liu, "Effect of Au supported $TiO_2$ with dominant exposed {0 0 1} facets on the visible-light photocatalytic activity", Appl. Catal. B Environ. 119 (2012) 146.