Advanced SearchSearch Tips
Characterization of crack self-healing of silicon carbide by hot press sintering
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characterization of crack self-healing of silicon carbide by hot press sintering
Kim, Seong-Hoon; Kim, Kyung-Hun; Dow, Hwan-Soo; Park, Joo-Seok; Kim, Kyung-Ja; Shim, Kwang-Bo;
  PDF(new window)
In this study, it was investigated that characteristic of crack-self-healing of hot-pressed SiC. SiC ceramics was sintered with and sintering additive by hot press. Sintering was performed in hot-press furnace in flowing argon (Ar), holding for 3 hr under and 50 MPa. The sintered SiC was machined into 3-point bending strength specimen of , and introduced pre-crack by Vickers indentation at 49.6 N. Specimens were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), 3-point bending strength after heat treatment at for 1~10 hr. The best crack-self-healing ability was achieved 770 MPa 3-point bending strength by heat treatment at for 5 hr.
Silicon carbide;Silicon oxide;Crack-self-healing;Hot press;Oxidation;
 Cited by
G.A. Slack, "Thermal conductivity of pure and impure silicon, silicon carbide, and diamond", J. Appl. Phys. 35 (1964) 3460. crossref(new window)

D.L. Barrett and R.B. Campbell, "Electron mobility measurements in SiC polytypes", J. Appl. Phys. 38 (1967) 53. crossref(new window)

L.H. Ford, N.S. Hibbert and D.G. Martin, "Recent developments of coatings for GCFR and HTGCR fuel particles and their performance", J. Nucl. Mater. 45 (1972) 139. crossref(new window)

L.L. Sneada, T. Nozawaa, Y. Katoha, T.-S. Byuna, S. Kondoa and D.A. Pettib, "Handbook of SiC properties for fuel performance modeling", J. Nucl. Mater. 371 (2007) 329. crossref(new window)

J.-W. Seo, J.-W. Kim, Y.-S. Hahn, K. Choi and J.-H. Lee, "Improvement of uniformity in chemical vapor deposition of silicon carbide using CFD", J. Korean Cryst. Growth Cryst. Technol. 24 (2014) 242. crossref(new window)

J.J. Petrovic and L.A. Jacobson, "Controlled surface flaws in hot-pressed SiC," J. Am. Ceram. Soc. 59 (1976) 34. crossref(new window)

T.K. Gupta, "Crack healing and strengthening of thermally shocked alumina", J. Am. Ceram. Soc. 59 (1976) 259. crossref(new window)

S.R. Choi and V. Tikare, "Crack healing behaviour of hot pressed silicon nitride due to oxidation", Scr. Metall. Mater. 26 (1992) 1263. crossref(new window)

J.E. Moffatt, W.J. Plumbridge and R. Hermann, "High temperature crack annealing effect on fracture toughness of alumina and alumina-SiC composite", Br. Ceram. Trans. 95 (1996) 23.

M.C. Chu, S. Sato, Y. Kobayashi and K. Ando, "Damage healing and strengthening behaviour in intelligent mullite/SiC ceramics", Fatigue Fract. Eng. Mater. Struct. 18 (1995) 1019.

M.C. Chu, S. Sato, Y. Kobayashi and K. Ando, "Study on strengthening of mullite by dispersion of carbide ceramics particles (in Jpn.)", Jpn. Soc. Mech. Eng. 60 (1994) 2829. crossref(new window)

K. Ando, T. Ikeda, S. Sato, F. Yao and Y. Kobayashi, "A preliminary study on crack healing behaviour of Si3N4/SiC composite ceramics", Fatigue Fract. Eng. Mater. Struct. 21 (1998) 119.

Y.Z. Zhang, L. Edwards and W.J. Plumbridge, "Crack healing in a silicon nitride ceramics", J. Am. Ceram. Soc. 81 (1998) 34.

K. Ando, S. Sato, Y. Kobayashi and M.C. Chu, "Crack healing behaviour of $Si_3N_4$ ceramics and its application to structural integrity", in Fracture from Defects, EFC- 12., M.W. Brown, E.R. de los Rios and K.J. Miller, (Engineering Materials Advisory Services, Sheffield, U.K., 1998) p. 497.

K. Ando, K. Tsuji, M. Ariga and S. Sato, "Fatigue properties of crack healed mullite/SiC composite ceramics (in Jpn.)", J. Soc. Mater. Sci. Jpn. 48 (1999) 1151.

K. Ando, M.C. Chu, S. Sato, F. Yao and Y. Kobayashi, "The study on crack healing behavior of silicon nitride ceramics (in Jpn.)", Jpn. Soc. Mech. Eng. 64 (1998) 1936. crossref(new window)

G. Magnani, L. Beaulardi and A. Brentar, "Crack healing in liquid-phase-pressureless-sintered siliconcarbidealuminum nitridecom-posites", J. Eur. Ceram. Soc. 30 (2010) 769. crossref(new window)

K.W. Nam and J.S. Kim, "Critical crack size of healing possibility of SiC ceramics", Mater. Sci. Eng. A. 527 (2010) 3236. crossref(new window)

W. Nakao, S. Abe and K. Ando, "SiC nanometer sizing effect on self healing ability of structural ceramics", Ceram. Eng. Sci. Proc. (2009) 137.

P.J. Jorgensen, M.E. Wardsworths and I.B. Cuter, "Oxidation of silicon carbide", J. Am. Cer. Soc. 42 (1959) 613. crossref(new window)

M.C. Chu, S.J. Cho, Y.C. Lee, H.M. Park and D.Y. Yoon, "Crack healing in silicon carbide", J. Am. Cer. Soc. 87 (2004) 490. crossref(new window)

Ceramic Source, Vol. 6 (American Ceramic Society, Westerville, OH, 1990) p. 352.