Advanced SearchSearch Tips
Magnetic Mineral Identification in Meteorites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Magnetic Mineral Identification in Meteorites
Kim, In-Ho; Yu, Yong-Jae;
  PDF(new window)
Meteorites are extraterrestrial solid rock fragments that fell from the outer space. Investigating mineral magnetic properties of the Meteorites is essential in understanding the evolution of planets and asteroids in the Solar System. In particular, magnetic characterization of magnetic mineral can provide constraints on the progress of differentiation in ancient planetary bodies. In the present study, ratio of thermoremanent magnetization (TRM) over saturation isothermal remanent magnetization (SIRM) was applied to diagnose the magnetic minerals in meteorites and igneous rocks. Distinctive classification of TRM/SIRM suggests that kamacite, tetrataenite, magnetite, and (Cr,Ti)-rich iron oxide are responsible for the magnetization of H5 Richardton, LL6 St. Severin, ALH84001, and DaG476, respectively. The TRM/SIRM ratio could be an efficient tool in identifying magnetic minerals especially when rocks or meteorites contain unstable material under heating.
Meteorite;magnetic minerals;magnetic properties;thermoremanent magnetization;saturation isothermal remanent magnetization;
 Cited by
Amelin, Y., Krot, A.N., Hutcheon, I.D., and Ulyanov, A.A. (2002) Lead isotopic ages of chondrules and calcium- aluminum-rich inclusions. Science, 297, 1678-1683. crossref(new window)

Amelin, Y., Ghosh, A., and Rotenburg, E. (2005) Unraveling the evolution of chondrite parent asteroids by precise U-Pb dating and thermal modeling. Geochim. Cosmochim. Acta, 69, 505-518. crossref(new window)

Antretter, M., Fuller, M., Scott, E., Jackson, M., Moskowitz, B., and Solheid, P. (2003) Paleomagnetic record of Martian meteorite ALH84001. Jour. Geophys. Res., 108(E6), 5049, doi:10.1029/2002JE001979. crossref(new window)

Borg, L.E., Connelly, J.N., Nyquist, L.E., Shih, C.Y., Wiesmann, H., and Reese, Y. (1999) The age of the carbonates in martian meteorite ALH84001. Science, 286, 90-94. crossref(new window)

Borg, L.E., Nyquist, L.E., Wiesmann, H., Shih, C.Y., and Reese, Y. (2003) The age of Dar al Gani 476 and the differentiation history of the Martian meteorites inferred from their radiogenic isotopic systematics. Geochim. Cosmochim. Acta, 67, 3519-3536. crossref(new window)

Bouvier, A., Blichert-Toft, J., Moynier, F., Vervoort, J.D., and Albarède, F. (2007) Pb-Pb dating constraints on the accretion and cooling history of chondrites. Geochim. Cosmochim. Acta, 71, 1583-1604. crossref(new window)

Bowring, S.A., and Williams, I.S. (1999) Priscoan (4.00 -4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol., 134, 3-16. crossref(new window)

Clarke, R.S. and Scott, E.R.D. (1980) Tetrataenite-ordered Fe-Ni, a new mineral in meteorites. Am. Mineral., 65, 624-630.

Dunlop, D.J. and Kletetschka, G. (2001) Multidomain hematite: A source of planetary magnetic anomalies? Geophys. Res. Lett., 28, 3345-3348. crossref(new window)

Garrick-Bethell, I. and Weiss. B.P. (2010) Kamacite blocking temperatures and applications to lunar magnetism. Earth Planet. Sci. Lett., 294, 1-7. crossref(new window)

Hutchison, R. (2004) Meteorites: A petrologic, chemical, and isotopic synthesis. Cambridge University Press, Cambridge. 506p.

Kletetschka, G., Acuna, M.H., Kohout, T., Wasilewski, P.J., and Connerney, J.E.P. (2004) An empirical scaling law for acquisition of thermoremanent magnetization. Earth Planet. Sci. Lett., 226, 521-528. crossref(new window)

Kletetschka, G., Fuller, M.D., Kohout, T., Wasilewski, P.J., Herrero-Bervera, E., Ness, N.F. and Acuna, M.H. (2006) TRM in low magnetic fields: A minimum field that can be recorded by large multidomain grains. Phys. Earth Planet. Inter., 154, 290-298. crossref(new window)

Krot, A.N., Keil, K., Goodrich, C.A., Scott, E.R.D., and Weisberg, M.K. (2004) Classification of Meteorites. In: Davis, A.M. (ed.), Treatise on Geochemistry, Vol. 1, Meteorites, Comets, and Planets, Elsevier, Oxford, 83-128.

Neel, L. (1949) Theorie du trainage magnetique des ferromagneniques en grains fins avec applications aux terres cuites. Ann. Geophys., 5, 99-136.

Rochette, P., Lorand, J.-P., Fillion, G., and Sautter, V. (2001) Pyrrhotite and the remanent magnetization on SNC meteorites: a changing perspective on Martian magnetism. Earth Planet. Sci. Lett., 190, 1-12. crossref(new window)

Taylor, L.A. (1979) Paleointensity determinations at elevated temperatures: Sample preparation technique, Proc. Lunar Planet. Sci. Conf., 10, 2183-2187.

Weiss, B.P., Kirschvink, J.L., Baudenbacher, F.J., Vali, H., Peters, N.T., MacDonald, F.A., and Wikswo, J.P. (2000) A low temperature transfer of ALH84001 from Mars to Earth. Science, 290, 791-795. crossref(new window)

Weiss, B.P., Vali, H., Baudenbacher, F.J., Kirschvink, J.L., Stewart, S.T., and Shuster, D.L. (2002) Records of an ancient Martian magnetic field in ALH84001. Earth Planet. Sci. Lett., 200, 449-463.

Wilde, S.A., Valley, J.W., Peck, W.H., and Graham, C.M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on Earth 4.4 Gyr ago. Nature, 409, 175-178. crossref(new window)

Yu, Y., Doh, S.-J., Kim, W., and Min, K. (2009) Ancient stable magnetism of the Richardton H5 chondrite, Phys. Earth Planet. Inter., 177, 12-18. crossref(new window)

Yu, Y. (2010) Paleointensity determination using anhysteretic remanence and saturation isothermal remanence, Geochem. Geophy. Geosys., 11, Q02Z12, doi:10.1029/ 2009GC002804.

Yu, Y., Doh, S.-J., Kim, W., and Min, K. (2011) Origin of stable remanent magnetization in the LL6 Chondrite, St. Severin. Phys. Earth Planet. Inter., submitted.