JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Magnetic Properties of Magnetites at Low Temperatures
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Magnetic Properties of Magnetites at Low Temperatures
Hong, Hoa-Bin; Yu, Yong-Jae;
  PDF(new window)
 Abstract
Magnetic properties at low-temperatures can diagnose the presence of certain magnetic minerals in rocks. At the Verwey transition temperature (, ~105~120 K), magnetite transforms from monoclinic to cubic structure as the temperature increases. At the isotropic point (, ~135 K), magnetocrystalline anisotropic constant of magnetite passes through zero (from negative to positive) as the temperature decreases so that its optimal remanence acquisition axis changes from [111] to [001]. A sharp remanence drop was observed at during warming of LTSIRM (low-temperature saturation isothermal remanent magnetization). For cooling of RTSIRM (room-temperature saturation isothermal remanent magnetization), the remanence decreased on passing and . On warming of RTSIRM, remanence recovery becomes more prominent as the average grain size of magnetite increases. In summary, the SIRM memory decreases with increasing grain size of magnetite. A similar, but rather gradual, remanence transition occurs for natural samples due to contribution of cations other than Fe. As a non-destructive tool, low-temperature magnetic behavior is sensitive to unravel the magnetic remanence carriers in terrestrial rocks or meteorites.
 Keywords
Magnetite;saturation remanent magnetization;remanence memory;Verwey transition;isotropic point;
 Language
Korean
 Cited by
 References
1.
Abe, K., Miyamoto, Y., and Chikazumi, S. (1976) Magnetocrystalline anisotropy of low temperature phase of magnetite. J. Phys. Soc. Japan, 41, 1894-1902. crossref(new window)

2.
Aragon, R. (1992) Magnetization and exchange in nonstoichiometric magnetite. Phys. Rev., 46, 5328-5333. crossref(new window)

3.
Aragon, R., Buttrey, D.J., Shepherd, J.P., and Honig, J. M. (1985) Influence of nonstoichiometry on the Verwey transition. Phys. Rev., 31, 430-436. crossref(new window)

4.
Brabes, V.A.M., Walz, F., and Kronmuller, H. (1998) Impurity effects upon the Verwey transition in magnetite. Phys. Rev., 58, 14,163-14,166. crossref(new window)

5.
Carporzen, L., Gilder, S.A., and Hart, R.J. (2006) Origin and implications of two Verwey transitions in the basement rocks of the Vredefort meteorite crater, South Africa. Earth Planet. Sci. Lett., 251, 305-317. crossref(new window)

6.
Dunlop, D.J., Schutts, L.D., and Hale, C.J. (1984) Paleomagnetism of Archean rocks from northwestern Ontario, 3, Rock magnetism of the Shelley Lake granite, Quetico Subprovince. Can. J. Earth Sci., 21, 879-886. crossref(new window)

7.
Hodych, J.P., Mackay, R.I., and English, G.M. (1998) Low-temperature demagnetization of saturation remanence in magnetite-bearing dolerites of high coercivity. Geophys. J. Int., 132, 401-411. crossref(new window)

8.
Kohout, T., Kosterov, A., Jackson, M., Pesonen, L.J., Kletetschka, G., and Lehtinen, M. (2007) Low-temperature magnetic properties of the Neuschwanstein EL6 meteorite. Earth Planet. Sci. Lett., 261, 143-151. crossref(new window)

9.
Liu, Q., Yu, Y., Muxworthy, A.R., and Roberts, A.P. (2008) Effects of internal stress on remanence intensity jumps across the Verwey transition for multidomain magnetite. Phys. Earth Planet. Inter., 169, 100-107. crossref(new window)

10.
Medrano, C., Schlenker, M., Baruchel, J., Espeso, J., and Miyamoto, Y. (1999) Domains in the low-temperature phase of magentite from synchrotron-radiation x-ray topographs. Phys. rev., 59, 1185-1195. crossref(new window)

11.
Moloni, K., Moskowitz, B.M., and Dahlberg, E.D. (1996) Domain structures in single crystal magnetite below the Verwey transition as observed with a low-temperature magnetic force microscope. Geophys. Res. Lett., 23, 2851-2854. crossref(new window)

12.
Moskowitz, B.M., Jackson, M., and Kissel, C. (1998) Lowtemperature magnetic behaviour of titanomagnetites. Earth Planet. Sci. Lett., 157, 141-149. crossref(new window)

13.
Ozdemir, O. (2000) Coercive force of single crystals of magnetite at low temperatures, Geophys. J. Int., 141, 351-356. crossref(new window)

14.
Ozdemir, O. and Dunlop, D.J. (1993) The effect of oxidation on the Verwey transition in magnetite. Geophys. Res. Lett., 20, 1671-1674. crossref(new window)

15.
Ozdemir, O., Dunlop, D.J., and Moskowitz, B.M. (2002) Changes in remanence, coercivity, and domain state at low temperature in magnetite. Earth Planet. Sci. Lett., 194, 343-358. crossref(new window)

16.
Syono, Y. (1965) Magnetocrystalline anisotropy and magnetostriction of $Fe_3O_4-Fe_2TiO_4$ series with special application to rock magnetism. Jap. J. Geophys., 4, 71-143.

17.
Verwey, E.J.W. (1939) Electronic conduction of magnetite and its transition point at low temperatures. Nature, 144, 327-328.

18.
Yu, Y. and Dunlop, D.J. (2001) Paleointensity determination on the late Precambrian Tudor Gabbro. Ontario, J. Geophys. Res., 106, 26, 331-26, 343.

19.
Yu, Y., Dunlop, D.J., and Ozdemir, O. (2003) On the resolution of multivectorial remanences. Earth Planet. Sci. Lett., 208, 13-26. crossref(new window)