JOURNAL BROWSE
Search
Advanced SearchSearch Tips
X-ray Absorption Spectroscopy Study on Surface Interaction of Arsenite onto Two-Line Ferrihydrite at pHs 4 and 10
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
X-ray Absorption Spectroscopy Study on Surface Interaction of Arsenite onto Two-Line Ferrihydrite at pHs 4 and 10
Lee, Woo-Chun; Choi, Sun-Hee; Cho, Hyen-Goo; Kim, Soon-Oh;
  PDF(new window)
 Abstract
X-ray absorption spectroscopy (XAS) study was conducted using arsenite-sorbed two-line ferrihydrite to investigate the mechanism of surface interactions between two-line ferrihydrite and As(III) (arsenite) which are ubiquitous in nature. The two-line ferrihydrite used was synthesized in the laboratory and the study was undertaken at pHs 4 and 10 to compare the difference in mechanisms of surface interaction between acidic and alkaline environments. The effect of arsenite-adsorbed concentrations on surface complexation was investigated at each pH condition as well. From the results of XAS analyses, the structural parameters of arsenite in the EXAFS revealed that the coordination number and distanceof As-O were 3.1~3.3 and 1.74~1.79 , respectively, which indicate that the unit structure of arsenite complex formed on the surface of two-line ferrihydrite is . The dominant structures of As(III)-Fe complex were examined to be bidentate binuclear comer-sharing () and the mixture of bidentate mononuclear edge sharing () and appeared as well. At pH 4, arsenite complex showed different structures on the surface of two-line ferrihydrite, depending on the adsorbed concentrations. At pH 10, on the contrary, the surface structures of arsenite complexes were interpreted to be almost identical, irrespective of the adsorbed concentrations of arsenite. Consequently, this microscopic XAS results support the results of macroscopic adsorption experiments in which the surface interaction between arsenite and two-line ferrihydrite is significantly influenced by pH conditions as well as arsenite concentrations.
 Keywords
As(III) (arsenite);two-line ferrihydrite;surface complexation;X-ray absorption spectroscopy (XAS);
 Language
Korean
 Cited by
1.
적철석(Hematite) 표면의 비소 흡착 특성,김성희;이우춘;조현구;김순오;

한국광물학회지, 2012. vol.25. 4, pp.197-210 crossref(new window)
2.
규소 슬래그를 이용한 수용상 비소 흡착 제거,김성희;설정우;이우춘;김순오;

자원환경지질, 2013. vol.46. 6, pp.521-533 crossref(new window)
3.
망간슬래그의 비소에 대한 수착특성 연구,설정우;김성희;이우춘;조현구;김순오;

한국광물학회지, 2013. vol.26. 4, pp.229-244 crossref(new window)
1.
Characterization of Arsenic Sorption on Manganese Slag, Journal of the Mineralogical Society of Korea, 2013, 26, 4, 229  crossref(new windwow)
2.
Characterization of Arsenic Adsorption onto Hematite, Journal of the Mineralogical Society of Korea, 2012, 25, 4, 197  crossref(new windwow)
3.
Removal of Aqueous Arsenic Via Adsorption onto Si Slag, Economic and Environmental Geology, 2013, 46, 6, 521  crossref(new windwow)
 References
1.
고경석, 오인숙, 김재곤, 안주성, 김형수, 석희준 (2006) 황산염처리 산화철피복모래의 비소 흡착능 평가 연구. 2006년 자원환경지질학회 춘계 학술발표회(초록), 제주도 4월 19일, 445-448.

2.
고일원, 이상우, 김주용, 김경웅, 이철효 (2004) 나노 크기 적철석 입자 피복 모래를 이용한 비소 3가와 비소 5가의 제거. 지하수토양환경, 9, 63-69.

3.
고일원 김주용, 김경웅, 안주성 (2005) 비소의 적철석 표면 흡착에 토양 유기물이 미치는 영향: 화학종 모델링 과 흡착 기작. 자원환경지질, 38, 23-31.

4.
김순오, 정영일, 조현구, 최선희, 이현휘 (2007) 비소와 영가철 및 철(수)산화물과의 표면반응에 대한 X선 흡 수분광 예비연구. 2007년 한국광물학회․한국암석학 회 공동학술발표회(초록), 안동대학교 5월 31일, 131-134.

5.
김순오, 이우춘, 정현수, 조현구 (2009) 침철석(goethite)과 비소의 흡착반응. 한국광물학회지, 22, 177-189.

6.
이우춘, 정현수, 김주용, 김순오 (2009) 레피도크로사이트(lepidocrocite) 표면의 비소 흡착 특성 규명. 자원환경지질, 42, 95-105.

7.
정영일, 김인선, 김순오 (2006) 영가철을 이용한 광미 용출액으로부터 비소 제거에 관한 연구. 2006년 대한지질학회 추계학술회(초록), 한국지질자원연구원 10월 26일, 149

8.
정영일, 김순오, 김인선, 조현구 (2007) Long-term evaluation of the feasibility of zerovalent iron for the removal of arsenic and heavy metals from tailingleachate. 2007년 춘계 지질과학기술 공동학술대회(초록), 경주 4월 25일, 382-384.

9.
정영일, 이우춘, 조현구, 윤성택, 김순오 (2008) 비소의 two-line ferrihydrite에 대한 흡착반응. 한국광물학회지, 21, 227-237.

10.
정현수, 이우춘, 조현구, 김순오 (2008) 자철석의 비소에 대한 흡착특성 연구. 한국광물학회지, 21, 425-434.

11.
Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D. (1998) Real space multiple scattering calculation and interpretation of X-ray absorption near edge structure. Phys. Rev. B., 58, 7565-7576. crossref(new window)

12.
Dixit, S. and Hering, J.G. (2003) Comparison of arsenic (V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol., 37, 4182-4189. crossref(new window)

13.
Farquhar, M.L., Charnock, J.M., Livens, F.R., and Vaughan, D.J. (2002) Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawitee, and pyrite: An X-ray absorption spectroscopy study. Environ. Sci. Technol. 36, 1757-1762. crossref(new window)

14.
Fuller, C.C., Davis, J.A., and Waychunas, G.A. (1993) Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim. Cosmochim. Acta, 57, 2271-2282. crossref(new window)

15.
Jung, Y.I., Cho, H.G., Kim, I.S., and Kim, S.O. (2007) Application of zerovalent iron for the removal of arsenic from leachate of tailing. The 60th anniversary of geological society of Korea (Abstracts for the international symposium on global environmental change), Seoul April 12-13, 52p.

16.
Jung, Y.I., Lee, W.C., Cho, H.G., Yun, S.T., and Kim, S.O. (2008) Adsorption of arsenic onto two-line ferrihydrite. J. Miner. Soc. Korea, 21, 227-237.

17.
Kim, S.O., Jung, Y.I., Cho, H.G. Park, W.J., and Kim, I.S. (2007) Removal of arsenic from leachate of tailing using laboratory-synthesized zerovalent iron. J. Applied and Biological Chemistry, 50, 6-12.

18.
Manceau, A. (1995) The mechanism of anion adsorption on iron oxides: Evidence for the bonding of arsenate tetrahedral on free ${Fe(O, OH)}_6$ edges. Geochim. Cosmochim. Acta, 59, 3647-3653. crossref(new window)

19.
Manning, B.A., Hunt, M.L., Amrhein, C., and Yarmoff, J.A. (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol., 36, 5455-5461. crossref(new window)

20.
Masue, Y., Loeppert, R.H., and Kramer, T.A. (2007) Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum:iron hydroxides. Environ. Sci. Technol., 41, 837-842. crossref(new window)

21.
Morin, G., Ona-Nguema, G., Wang, Y., Menguy, N., Juillot, F., Proux, O., Guyot, F., Calas, G., and Brown Jr., G.E. (2008) Extended x-ray absorption fine structure analysis of arsenite and arsenate adsorption on maghemite. Environ. Sci. Technol. 42, 2361-2366. crossref(new window)

22.
Ona-Nguema, G., Morin, G., Juillot, F., Calas, G., and Brown Jr., G.E. (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ. Sci. Technol., 39, 9147-9155. crossref(new window)

23.
Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537-541. crossref(new window)

24.
Raven, K.P., Jain, A., and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol., 32, 344-349. crossref(new window)

25.
Schwertmann U. and Cornell R.M. (2000) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH Publishers, New York, USA. 103-112.

26.
Sherman, D.M. and Randall, S.R. (2003) Surface complexaton of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta, 67, 4223-4230. crossref(new window)

27.
Waychunas, G.A., Rea, B.A., Fuller, C.C., and Davis, J.A. (1993) Surface chemistry of ferrihydrite: Part I. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57, 2251-2269. crossref(new window)

28.
Wilkie, J.A. and Hering, J.G. (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloid Surface A, 107, 97-110. crossref(new window)