JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Uranium Removal by D. baculatum and Effects of Trace Metals
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Uranium Removal by D. baculatum and Effects of Trace Metals
Lee, Seung-Yeop; Oh, Jong-Min; Baik, Min-Hoon;
  PDF(new window)
 Abstract
Removal of dissolved uranium by D. baculatum, a sulfate-reducing bacterium, and effects of trace metals such as manganese, copper, nickel, and cobalt were investigated. Total concentrations of dissolved uranium and trace metals were used by and , respectively. Most dissolved uranium decreased up to a non-detectable level (< 10 ppb) MS during the experiments. Most of the heavy metals did nearly not affect the bioremoval rates and amounts of uranium, but copper restrained microbial activity. However, it is found that dissolved uranium rapidly decreased after 2 weeks, showing that the bacteria can overcome the copper toxicity and remove the uranium. It is observed that nickel and cobalt were readily coprecipitated with biogenic mackinawite.
 Keywords
Sulfate-reducing bacterium;D. baculatum;uranium;heavy metals;mackinawite;
 Language
Korean
 Cited by
1.
금속환원미생물에 의한 수용액의 산화/환원전위 변화 및 생합성 맥키나와이트의 역할,이승엽;오종민;백민훈;이용재;

한국광물학회지, 2011. vol.24. 4, pp.279-287 crossref(new window)
2.
셀레늄-미생물간의 반응 및 셀레늄 광물화 특성,이승엽;오종민;백민훈;

한국광물학회지, 2011. vol.24. 3, pp.217-224 crossref(new window)
3.
미생물 기원 맥키나와이트의 산화 및 용해 특성 연구,이승엽;백민훈;정종태;

한국광물학회지, 2012. vol.25. 3, pp.155-162 crossref(new window)
4.
생지화학적 환원조건에서 우라늄의 침철석 및 몬모릴로나이트에 대한 수착 특성,이승엽;조혜륜;백민훈;정의창;정종태;

한국광물학회지, 2012. vol.25. 4, pp.263-270 crossref(new window)
5.
고준위폐기물 완충재로 사용되는 벤토나이트의 미생물의 존재 및 특성,이지영;이승엽;백민훈;정종태;

방사성폐기물학회지, 2013. vol.11. 2, pp.95-102 crossref(new window)
6.
토착미생물의 생지화학적 활동에 의한 지하수의 산화/환원전위 변화 특성,이승엽;노열;정종태;

자원환경지질, 2014. vol.47. 1, pp.61-69 crossref(new window)
1.
Study on the Oxidation and Dissolution Characteristics of Biogenic Mackinawite, Journal of the Mineralogical Society of Korea, 2012, 25, 3, 155  crossref(new windwow)
2.
Existence and Characteristics of Microbial cells in the Bentonite to be used for a Buffer Material of High-Level Wastes, Journal of the Korean Radioactive Waste Society, 2013, 11, 2, 95  crossref(new windwow)
3.
Changes of the Oxidation/Reduction Potential of Groundwater by the Biogeochemical Activity of Indigenous Bacteria, Economic and Environmental Geology, 2014, 47, 1, 61  crossref(new windwow)
4.
Sorption Characteristics of Uranium on Goethite and Montmorillonite under Biogeochemical Reducing Conditions, Journal of the Mineralogical Society of Korea, 2012, 25, 4, 263  crossref(new windwow)
 References
1.
김유미, 박정은, 이주영, 홍민선, 노열 (2011) 순천만 갯벌 미생물을 이용한 금속 환원 및 생광물화작용. 지질학회지, 47, 19-30.

2.
오종민, 이승엽, 백민훈, 노열 (2010) 한국원자력연구원 지하심부 미생물에 의한 용존우라늄 제거 및 광물화 특성. 한국광물학회지, 23, 107-115.

3.
이승엽, 백민훈, 송준규 (2009) 스와넬라균(Shewanella p.)에 의한 용존우라늄 제거 특성 및 방사성폐기물 처 분에의 응용. 자원환경지질, 42, 471-477.

4.
이승엽, 백민훈, 노열, 오종민 (2010) 지하심부 금속환원 미생물과 용존우라늄과의 반응 및 철함유 광물의 영 향. 지질학회지, 46, 357-366.

5.
이종운, 전효택 (2000) 원소의 지구화학적 거동에 미치는 박테리아의 영향: 지구 미생물학의 최근 연구 동향. 자원환경지질, 33, 353-365.

6.
Abdelouas, A., Lutze, W., Gong, W., Nuttall, E.H., Strietelmeier, B.A., and Travia, B.J. (2000) Biological reduction of uranium in groundwater and subsurface soil. Sci. Total Environ., 250, 21-35. crossref(new window)

7.
Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M., and Lovley, D.R. (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol., 69, 5884-5891. crossref(new window)

8.
Bates, R.L. and Jackson, J.A. (1980) Glossary of Geology (2nd Ed.), American Geological Institute, Falls Church, Virginia, 751p.

9.
Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Duff, M.C., Gorby, Y.A., Li, S.M.W., and Krupka, K.M. (2000) Reduction of U(VI) in goethite (alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim. Cosmochim. Acta, 64, 3085-3098. crossref(new window)

10.
Lee, S.Y., Baik, M.H., and Choi, J.W. (2010) Biogenic formation and growth of uraninite ($UO_2$). Environ. Sci. Technol., 44, 8409-8414. crossref(new window)

11.
Lloyd, J.R. and Renshaw, J.C. (2005) Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Current Opinion Biotech., 16, 254-260. crossref(new window)

12.
Lovely, D.R. (1991) Dissimilatory Fe(III) and Mn(IV) Reduction. Microbiol. Reviews, 55, 259-287.

13.
Roh. Y., Moon. H.S., and Song, Y. (2002) Metal reduction and mineral formation by Fe(III)-reducing bacteria isolated from extreme environment. J. Miner. Soc. Korea, 15, 231-240.

14.
Sani, R.K., Peyton, B.M., Amonette, J.E., and Geesey, G.G. (2004) Reduction of uranium(VI) under sulfatereducing conditions in the presence of Fe(III)-(hydr) oxides. Geochim. Cosmochim. Acta, 68, 2639-2648. crossref(new window)

15.
Suzuki, Y., Kelly, S.D., Kemner, K.M., and Banfield, J.F. (2002) Nanometre-size products of uranium bioreduction. Nature, 419, 134. crossref(new window)