JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Mineral Temperatures of the Sedimentary Basins for Petroleum Resources Exploration, Korea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Mineral Temperatures of the Sedimentary Basins for Petroleum Resources Exploration, Korea
Son, Byeong-Kook;
  PDF(new window)
 Abstract
The potential of petroleum generation was investigated by clay mineralogical changes of illite-smectite on the sedimentary basins: Tertiary Pohang basin and Cretaceouls Gyeongsang basin on land, and offshore basins east and west of Korea. Only disordered illite-smectite mixed layer minerals occur in the Pohang sediment, where petroleum generation cannot be expected due to low temperatures below . By contrast, the Gyeongsang basin is characterized by the occurrence of illite and high temperatures above which are obtained by illite crystallinity. The high temperatures indicate that the Gyeongsang sediment ha, already passed through the oil generation stage. The change of disordered illite-smectite to R-l ordered illite-smectite is shown in the sediment of the East Sea continental shelf area at a depth of 2,500 m. Therefore, the oil generation can be expected in the sediments below the depth of 2,500 m. The sequential change of disordered illite-smectie to R=3 ordered illite-smectite through R=l ordered illite-smectite occurs in the sediments of West Sea continental shelf area with burial depth which shows the favorable condition for oil and gas generation. The temperatures of sediments measured by illite-smectite indicate that hydrocarbon potential is very low in the onland basins but high in the continental shelf areas.
 Keywords
Pohang basin;Gyeongsang basin;illite-smectite;clay mineral;petroleum generation;
 Language
Korean
 Cited by
 References
1.
강동효, 유동근, 박장준, 류병재, 구남형, 김원식, 박관순, 박근필, 김지수 (2009) 동해 울릉분지의 가스하이드레이트 부존형태, 지질학회지, 45, 143-155.

2.
손병국 (2006) 일본 제3기 해성 퇴적분지에서의 스멕타이트 매몰 속성작용. 한국광물학회지, 19, 221-229.

3.
손병국, 권영인, 천종화 (2008) 울릉분지 가스하이드레이트의 지시자 "자생 아라고나이트". 한국암석학회, 한국광물학회 공동학술발표회 논문집, 70-73.

4.
유동근, 강동효, 구남형, 김원식, 김길영, 김병엽, 정순홍, 김영준, 이호영, 박근필, 이광훈, 박수철 (2008) 동해 울릉분지의 가스하이드레이트 부존 지구물리증거. 지질학회지, 44, 645-655.

5.
이보라, 손병국 (2007) 동해 울릉분지 남서연변부 대륙붕 지역의 석유시스템 모델링, 지질학회지, 43, 477-499.

6.
Burtner, R.L. and Warner, M.A. (1986) Relationship between illite/smectite diagenesis and hydrocarbon generation in lower Cretaceous Mowry and Skull Creek shales of the northern Rocky mountain area. Clays and Clay Minerals, 34, 390-402. crossref(new window)

7.
Espitalié, J., Deroo, G., and Marquis, F. (1985) La pyrolyse Rock Eval et ses applications. Revue de l'Institute Francais du Petrole, 40, 563-784. crossref(new window)

8.
Hower, J., Eslinger, E.V., Hower, M.E., and Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical chemical evidence. Geoological Society of American Bulletin, 87, 725-737. crossref(new window)

9.
Inoue, A., Bouchet, A., Velde, B., and Meunier, A. (1989) Convenient technique for estimating smectite percentage in randomly interstratified illite/smectite minerals. Clays and Clay Minerals, 37, 227-234. crossref(new window)

10.
Kisch, H.J. (1987) Correlation between indicators of very low metamorphism. In: Frey, M. (ed.), Low Temperature Metamorphism. Blackie, Glasgow, 227-304.

11.
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. Journal of Metamorphic Geology, 9, 665-670. crossref(new window)

12.
Kubler, B. (1966) La cristallinite de l'illite et leszones tout a fait superieures du metamorphisme. In: Schaer, J.P. (ed.), Colloque sur les Etages Techniques, Neuchatel, 105-122.

13.
Kubler, B., Pittion, J.-L., Heroux, Y., Charollais, J., and Weidmann, M. (1979) Sur le pouvoir reflecteur de la vitrinite dans quelques roches du Jura, de la Molasse et des Nappes prealpines, helvetiques de penniques., Eclogae Geologicae Helvetiae, 72, 347-373.

14.
Magoon, L.B. and Dow, W.G. (1994) The petroleum system from source to trap. American Association of Petroleum Geologists, Memoir 60, 3-24.

15.
Moore, D.M., and Reynolds, R.C. (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford university, 378p.

16.
Peters, K.E., Walters C.C., and Moldowan, J.M. (2005) The biomarker guide, Cambridge university press, Cambridge, U.K., 1155p.

17.
Pollastro, R.M. (1990) The illite/smectite geothermometer - Concept, methdology, and application to basin history and hydrocarbon generation. In: Nuccio, V.F. and Barker, C.E.., (eds.), Application of Thermal Maturity Studies to Energy Exploration, 1-18.

18.
Pollastro, R.M. (1993) Considerations and applications of the smectite/illite geothermometer in hydrocarbonbearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41, 119-133. crossref(new window)

19.
Price, L.C. (1983) Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleo-thermometer. Journal of Petroleum Geology, 6, 5-38. crossref(new window)

20.
Reynolds, R.C. Jr. (1985) NEWMOD, A computer program for the calculation of on-dimensional diffraction patterns of mixed-layered clays: R. C. Reynolds, Jr., 8 Brook Rd., Hanover, NH.

21.
Son, B.-K. (1996) Mineralogy and diagenesis of interstratified I/S in the Tertiary Yeonil sediment, SE Korea. Clay Science, 9, 359-384.

22.
Son, B.-K., Yoshimura, T., and Fukasawa, H. (2001) Diagenesis of dioctahedral and trioctahedral smectites from alternating beds in Miocene and Pleistocene rocks of the Niigata basin, Japan. Clays and Clay Minerals, 49, 333-346. crossref(new window)

23.
Stach, E., Mackowsky, M.-Th., Teichmuller, M., Taylor, G.H., Chandra, D., and Teichmuller, R. (1982) Stach's textbook of coal petrology. Gebruder Borntraeger, Berlin, 535p.