JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Magnetism of Ferric Iron Oxide and Its Significance in Martian Lithosphere
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Magnetism of Ferric Iron Oxide and Its Significance in Martian Lithosphere
Jeong, Doo-Hee; Yu, Yong-Jae;
  PDF(new window)
 Abstract
Martian satellite missions indicate that Martian equatorial plains are covered by ferric iron oxide. As a non-destructive technique, low-temperature treatment of remanent magnetization is effective in identifying magnetic minerals in rocks. In the present study, four sets of ferric iron oxides were prepared by aqueous alteration of ferrihydrite at warm conditions and four others by dehydration of goethite. As the amount of aluminous trivalent cations increases, crystallographic lattice parameters and Nel temperatures decrease. Such declines originate from lattice distortion as the smaller aluminous trivalent cations substitue the larger terric irons. Whilst high remanence memory was observed for aqueously produced ferric iron oxide, low remanence memory was observed for dehydrated ferric iron oxide. In the future. magnetic remanence memory would be powerful in diagnosing the origin of ferric iron oxide.
 Keywords
Ferric iron oxide;hematite;mars;remanence memory;morin transition;
 Language
Korean
 Cited by
1.
저온변환에 따른 적철석의 자화안정도,장수진;유용재;

한국광물학회지, 2013. vol.26. 1, pp.19-25 crossref(new window)
1.
Magnetic Stability of Hematite on Low-temperature Magnetic Phase Transition, Journal of the Mineralogical Society of Korea, 2013, 26, 1, 19  crossref(new windwow)
 References
1.
Antretter, M., Fuller, M., Scott, E., Jackson, M., Moskowitz, B., and Solheid, P. (2003) Paleomagnetic record of Martian meteorite ALH84001. Journal of Geophysical Research, 108(E6), 5049, doi:10.1029/2002JE001979. crossref(new window)

2.
Bando, Y., Kiyama, M., Yamamoto, N., Takada, T., Shinjo, T., and Takaki, H. (1965) Magnetic properties of ${\alpha}Fe_2O_3$ fine particles. Journal of Physical Society of Japan, 20, 2086. crossref(new window)

3.
Christensen, P.R., Morris, R.V., Lane, M.D., Bandfield, J.L., and Malin, M.C. (2001) Global mapping of Martian hematite mineral deposits: Remnants of water-driven processes on early Mars. Journal of Geophysical Research, 106(E10), 23,873-23,885, doi:10.1029/2000JE001415. crossref(new window)

4.
Christensen, P., McSween Jr, H.Y., Bandfield, J.L., Ruff, S.W., Rogers, A.D., Hamilton, V.E., Gorelick, N., Wyatt, M.B., Jakosky, B.M., Kieffer, H.H., Malin, M.C., and Moersch, J.E. (2005) Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature, 436, 504-509.

5.
de Boer, C.B., Dekkers, M.J., and van Hoof, T.A.M. (2001) Rock-magnetic properties of TRM carrying baked and molten rocks straddling burnt coal seams. Physics of the Earth and Planetary Interiors, 126, 93-108. crossref(new window)

6.
Diakonov, I., Khodakovsky, I., Schott, J., and Sergeeva, E. (1994) Thermodynamic properties of iron oxides and hydroxides. I. Surface and bulk thermodynamic properties of goethite (${\alpha}FeOOH$) up to 500 K. European Journal of Mineralogy, 6, 967-983. crossref(new window)

7.
Dunlop, D.J., (1971) Magnetic properties of fine-particle hematite. Annals de Géophysique, 27, 269-293.

8.
Dunlop, D.J. and Kletetschka, G. (2001) Multidomain hematite: A source of planetary magnetic anomalies? Geophysical Research Letters, 28, 3345-3348. crossref(new window)

9.
Kletetschka, G., Acuna, M.H., Kohout, T., Wasilewski, P.J., and Connerney, J.E.P. (2004) An empirical scaling law for acquisition of thermoremanent magnetization. Earth and Planetary Science Letters, 226, 521-528. crossref(new window)

10.
Liebermann, R.C. and Banerjee. S.K. (1971) Magnetoelastic interactions in hematite: Implications for geophysics. Journal of Geophysical Research, 76, 2735-2756. crossref(new window)

11.
Muench, G.J., Arajs, S., and Matijevic, E. (1985) The Morin transition in small ${\alpha}Fe_2O_3$ particles. Physica Status Solidi A, 92, 187-192. crossref(new window)

12.
Ozdemir, O., Dunlop, D.J., and Berquo, T.S. (2008) Morin transition in hematite: Size dependence and thermal hysteresis. Geochemistry Geophysics Geosystems, 9, Q10Z01, doi: 10.1029/2008GC002110.

13.
Petrovsky, E. and Kapicka, A. (2006) On determination of the Curie point from thermomagnetic curves. Journal of Geophysical Research, 111, B12S27, doi:10.1029/2006JB004507.

14.
Purucker, M., Ravat, D.T., Frey, H.V., Voorhies, C.V., Sabaka, T., and Acuna, M.H. (2000) An altitudenormalized magnetic map of Mars and its interpretation. Geophysical Research Letters, 27, 2449-2452. crossref(new window)

15.
Rochette, P., Lorand, J.-P., Fillion, G., and Sautter, V. (2001) Pyrrhotite and the remanent magnetization on SNC meteorites: a changing perspective on Martian magnetism. Earth and Planetary Science Letters, 190, 1-12. crossref(new window)

16.
Schubert, G., Russell, C.T., and Moore, W.B. (2000) Timing of the Martian dynamo. Nature, 408, 666-667. crossref(new window)

17.
Spencer, E. and Percival, F.G. (1952) The structure and origin of the banded hematite jaspers of Singhbhum, India. Econimic Geology, 47, 365-383. crossref(new window)

18.
Walker, T.R. (1967) Formation of red beds in modern and ancient deserts. Geological Society of America Bulletin, 78, 353-368. crossref(new window)

19.
Weiss, B.P., Kirschvink, J.L., Baudenbacher, F.J., Vali, H., Peters, N.T., MacDonald, F.A., and Wikswo, J.P. (2000) A low temperature transfer of ALH84001 from Mars to Earth. Science, 290, 791-795. crossref(new window)

20.
Weiss, B.P., Vali, H., Baudenbacher, F.J., Kirschvink, J.L., Stewart, S.T., and Shuster, D.L. (2002) Records of an ancient Martian magnetic field in ALH84001. Earth and Planetary Science Letters, 200, 449-463.

21.
Yu, Y. and Gee, J.S. (2005) Spinel in Martian meteorite SaU 008: Implications for Martian magnetism. Earth and Planetary Science Letters, 232, 287-294. crossref(new window)