JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Change of Oxidation/Reduction Potential of Solution by Metal-Reducing Bacteria and Roles of Biosynthesized Mackinawite
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Change of Oxidation/Reduction Potential of Solution by Metal-Reducing Bacteria and Roles of Biosynthesized Mackinawite
Lee, Seung-Yeop; Oh, Jong-Min; Baik, Min-Hoon; Lee, Yong-Jae;
  PDF(new window)
 Abstract
In order to identify if bacteria surviving in soils and groundwater can change the oxidation/reduction potential of groundwater, Eh values of solution that contained bacteria were measured for 2 weeks. The Eh values of the solution reacted with sulfate-reducing bacteria decreased from -120 mV to -500 mV in 5 days, and was superior to in reducing the solution. The Eh value was relatively higher for the solution containing , iron-reducing bacteria, showing -400 mV. During the Eh decrease by the metal-reducing bacteria, a sulfide mineral such as mackinawite (FeS) started precipitating through the microbial reducing process for sulfate and ferric iron. These results show that the ORP of natrual groundwater may be sensitive to the geomicrobial respiration. In addition, a subsurface environment where groundwater is highly reduced and sulfide minerals are largely biogenerated may be a good place to retard the migration of oxidized radionu-clides by making them precipitated as reduced forms.
 Keywords
Oxidation/reduction potential;metal-reducing bacteria;mackinawite;sulfide mineral;radionuclides;
 Language
Korean
 Cited by
1.
미생물 기원 맥키나와이트의 산화 및 용해 특성 연구,이승엽;백민훈;정종태;

한국광물학회지, 2012. vol.25. 3, pp.155-162 crossref(new window)
2.
생지화학적 환원조건에서 우라늄의 침철석 및 몬모릴로나이트에 대한 수착 특성,이승엽;조혜륜;백민훈;정의창;정종태;

한국광물학회지, 2012. vol.25. 4, pp.263-270 crossref(new window)
3.
고준위폐기물 완충재로 사용되는 벤토나이트의 미생물의 존재 및 특성,이지영;이승엽;백민훈;정종태;

방사성폐기물학회지, 2013. vol.11. 2, pp.95-102 crossref(new window)
4.
황산염환원미생물에 의한 금속재료의 부식 특성,이승엽;정종태;

한국광물학회지, 2013. vol.26. 4, pp.219-228 crossref(new window)
5.
토착미생물의 생지화학적 활동에 의한 지하수의 산화/환원전위 변화 특성,이승엽;노열;정종태;

자원환경지질, 2014. vol.47. 1, pp.61-69 crossref(new window)
1.
Corrosive Characteristics of Metal Materials by a Sulfate-reducing Bacterium, Journal of the Mineralogical Society of Korea, 2013, 26, 4, 219  crossref(new windwow)
2.
Indigo dyeing onto ramie fabric via microbial reduction: Reducing power evaluation of some bacterial strains isolated from fermented indigo vat, Fibers and Polymers, 2016, 17, 7, 1000  crossref(new windwow)
3.
Sorption Characteristics of Uranium on Goethite and Montmorillonite under Biogeochemical Reducing Conditions, Journal of the Mineralogical Society of Korea, 2012, 25, 4, 263  crossref(new windwow)
4.
Changes of the Oxidation/Reduction Potential of Groundwater by the Biogeochemical Activity of Indigenous Bacteria, Economic and Environmental Geology, 2014, 47, 1, 61  crossref(new windwow)
5.
Existence and Characteristics of Microbial cells in the Bentonite to be used for a Buffer Material of High-Level Wastes, Journal of the Korean Radioactive Waste Society, 2013, 11, 2, 95  crossref(new windwow)
6.
Study on the Oxidation and Dissolution Characteristics of Biogenic Mackinawite, Journal of the Mineralogical Society of Korea, 2012, 25, 3, 155  crossref(new windwow)
 References
1.
노열, 문희수, 송윤구 (2002) 철환원 박테리아에 의한 금속 환원 및 광물형성. 한국광물학회지, 15, 231-240.

2.
이승엽, 백민훈, 송준규 (2009) 스와넬라균(Shewanellap.)에 의한 용존우라늄 제거 특성 및 방사성폐기물 처분에의 응용. 자원환경지질, 42, 471-477.

3.
오종민, 이승엽, 백민훈, 노열 (2010) 한국원자력연구원 지하심부 미생물에 의한 용존우라늄 제거 및 광물화 특성. 한국광물학회지, 23, 107-115.

4.
이승엽, 오종민, 백민훈 (2011) 국내 지하수에 서식하는 바쿨라텀에 의한 용존우라늄 제거 및 미량 중금속 원소들의 영향. 한국광물학회지, 24, 83-90.

5.
이종운, 전효택 (2000) 원소의 지구화학적 거동에 미치는 박테리아의 영향: 지구 미생물학의 최근 연구 동향. 자원환경지질, 33, 353-365.

6.
한정상 (1998) 지하수환경과 오염. 박영사, 서울, 1071p.

7.
Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M., and Lovley, D.R. (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol., 69, 5884-5891. crossref(new window)

8.
Barton, L.L. and Hamilton, W.A. (2007) Sulphate-Reducing Bacteria, Environmental and Engineered Systems. Cambridge University Press, 533p.

9.
Ehrlich, H.L. and Newman, D.K. (2009) Geomicrobiology (5th Ed.). CRC Press, 606p.

10.
Gramp, J.P., Bigham, J.M., Jones, F.S., and Tuovinen, O.H. (2010) Formation of Fe-sulfides in cultures of sulfate-reducing bacteria. J. Hazard. Mater., 175, 1062-1067. crossref(new window)

11.
Konhauser, K. (2007) Introduction to Geomicrobiology. Blackwell publishing, 425p.

12.
Lee, S.Y., Baik, M.H., and Choi, J.W. (2010) Biogenic formation and growth of uraninite ($UO_{2}$). Environ. Sci. Technol., 44, 8409-8414. crossref(new window)

13.
Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn(IV) Reduction. Microbiol. Reviews, 55, 259-287.

14.
Neck, V. and Kim, J.I. (2001) Solubility and hydrolysis of tetravalent actinides. Radiochim. Acta, 89, 1-16. crossref(new window)

15.
Ohfuji, H. and Rickard, D. (2006) High resolution transmission electron microscopic study of synthetic nanocrystalline mackinawite. Earth Planet. Sci. Lett., 241, 227-233. crossref(new window)

16.
Ulrich, K.U., Singh, A., Schofield, E.J., Bargar, J.R., Veeramani, H., Sharp, J.O., Bernier-Latmani, R., and Giammar, D.E. (2008) Dissolution of biogenic and synthetic $UO_{2}$ under varied reducing conditions. Environ. Sci. Technol., 42, 5600-5606. crossref(new window)

17.
Zhang, P.C. and Brady, P.V. (2002) Geochemistry of Soil Radionuclides. SSSA Special Publication Number 59, Soil Science Society of America, Madison, Wisconsin, USA, 252p.