JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Atomic Structure of Dissolved Carbon in Enstatite: Raman Spectroscopy and Quantum Chemical Calculations of NMR Chemical Shift
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Atomic Structure of Dissolved Carbon in Enstatite: Raman Spectroscopy and Quantum Chemical Calculations of NMR Chemical Shift
Kim, Eun-Jeong; Lee, Sung-Keun;
  PDF(new window)
 Abstract
Atomistic origins of carbon solubility into silicates are essential to understand the effect of carbon on the properties of silicates and evolution of the Earth system through igneous and volcanic processes. Here, we investigate the atomic structure and NMR properties of dissolved carbon in enstatite using Raman spectroscopy and quantum chemical calculations. Raman spectrum for enstatite synthesized with 2.4. wt% of amorphous carbon at 1.5 GPa and shows vibrational modes of enstatite, but does not show any vibrational modes of or . The result indicates low solubility of carbon into enstatite at a given pressure and temperature conditions. Because NMR chemical shift is sensitive to local atomic structure around carbon and we calculated NMR chemical shielding tensors for C substituted enstatite cluster as well as molecular using quantum chemical calculations to give insights into NMR chemical shifts of carbon in enstatite. The result shows that NMR chemical shift of is 125 ppm, consistent with previous studies. Calculated NMR chemical shift of C is ~254 ppm. The current calculation will alllow us to assign potential NMR spectra for the enstatite dissolved with carbon and thus may be useful in exploring the atomic environment of carbon.
 Keywords
Carbon dioxide;;NMR chemical shift;quantum chemical caculations;solubility of carbon into earth materials;
 Language
Korean
 Cited by
1.
양자화학계산을 이용한 Si-O 결합길이가 MgSiO3 페로브스카이트의 X-선 Raman 산란 스펙트럼에 미치는 영향에 대한 연구,이유수;이성근;

한국광물학회지, 2014. vol.27. 1, pp.1-15 crossref(new window)
1.
Quantum Chemical Calculations of the Effect of Si-O Bond Length on X-ray Raman Scattering Features for MgSiO3Perovskite, Journal of the Mineralogical Society of Korea, 2014, 27, 1, 1  crossref(new windwow)
 References
1.
이범한, 이성근 (2007) 캐올리나이트 규산염 층과 벤질알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향. 한국광물학회지, 20, 313-325.

2.
이유수, 이성근 (2010) 산소 K-전자껍질 에너지-손실 흡수끝-부근 구조 양자계산을 이용한 Si-$O_{2}$ 동질이상 광물의 전자구조 연구. 한국광물학회지, 23, 403-411.

3.
Alam, T.M., Friedmann, T.A., and Jurewicz, J.G. (2002) Solid State 13C MAS NMR investigations of amorphous carbon thin films structural changes during annealing. In: Soriaga, M.P., Stickney, J., Bottomley, L.A., and Kim, Y.-G.(eds.) Thin films: Preparation, characterization, applications., Kluwer, 370.

4.
Alam, T.M., Friedmann, T.A., Schultz, P.A., and Sebastiani, D. (2003) Low temperature annealing in tetrahedral amorphous carbon thin films observed by C-13 NMR spectroscopy. Phys. Rev. B, 67, 245309. crossref(new window)

5.
Behrens, H. and Gaillard, F. (2006) Geochemical aspects of melts: Volatiles and redox behavior. Elements, 2, 275-280. crossref(new window)

6.
Blank, J.G. and Brooker, R.A. (1994) Experimental studies of carbon dioxide in silicate melts: Solubility, speciation, and stable carbon isotope behavior. In: Carroll, M.R., and Holloway, J.R.(eds.) Volatiles in Magmas, Mineral. Soc. Am.

7.
Blank, J.G., Stolper, E.M., and carroll, M.R. (1993) Solubilities of caron-dioxide and water in rhyolitic melt at 850-degrees-C and 750 Bars. Earth Planet. Sci. Lett., 119, 27-36. crossref(new window)

8.
Brearley, M. and Montana A. (1989) The effect of $CO_{2}$ on the viscosity of silicate liquids at high- pressure. Geochim. Cosmochim. Acta, 53, 2609- 2616. crossref(new window)

9.
Brey, G. (1976) $CO_{2}$ solubility and solubility mechanisms in silicate melts at high-pressures. Contrib. Mineral. Petrol., 57, 215-221. crossref(new window)

10.
Brooker, R.A., Kohn, S.C., Holloway, J.R., McMillan, P.F., and Carroll, M.R. (1999) Solubility, speciation and dissolution mechanisms for $CO_{2}$ in melts on the $NaAlO_{2}$-$SiO_{2}$ join. Geochim. Cosmochim. Acta, 63, 3549-3565. crossref(new window)

11.
Brooker, R.A., Kohn, S.C., Holloway, J.R., and Mc-Millan, P.F. (2001a) Structural controls on the solubility of $CO_{2}$ in silicate melts Part I: Bulk solubility data. Chem. Geol., 174, 225-239. crossref(new window)

12.
Brooker, R.A., Kohn, S.C., Holloway, J.R., and Mc-Millan, P.F. (2001b) Structural controls on the solubility of $CO_{2}$ in silicate melts Part II: IR characteristic of carbonate groups in silicate glasses. Chem. Geol., 174, 241-254. crossref(new window)

13.
Chopelas, A. (1999). Estimates of mantle relevant Clapeyron slopes in the $MgSiO_{3}$ system from highpressure spectroscopic data. Am. Mineral., 84, 233-244. crossref(new window)

14.
Di Valentin, C., Pacchioni, G., and Selloni, A. (2005) Theory of carbon doping of titanium dioxide. Chem. Mater., 17, 6656-6665. crossref(new window)

15.
Dybowski, C., Gaffney, E.J., Sayir, A., and Rabinowitz, M.J. (1996) Solid-state $^{13}C$ and $^{29}Si$ MAS NMR spectroscopy of silicon carbide. Colloid. Surface. A, 118, 171-181. crossref(new window)

16.
Eggler, D.H., Mysen, B.O., Hoering, T.C., and Holloway, J.R. (1979) Solubility of carbon-monoxide in silicate melts at high-pressures and its effect on silicate phase-relations. Earth Planet. Sci. lett., 43, 321-330. crossref(new window)

17.
Fine, G. and Stolper, E (1985) The speciation of carbon-dioxide in sodium aluminosilicate glasses. Contrib. Mineral. Petrol., 91, 105-121. crossref(new window)

18.
Freund, F., Kathrein, H., Wengeler, H., Knobel, R., and Reinen, H.J. (1980) Carbon in solid solution in forsterite--a key to the untractable nature of reduced carbon in terrestrial and cosmogenic rocks. Geochim. Cosmochim. Acta, 44, 1319-1321, 1323-1333. crossref(new window)

19.
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J. B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D. J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P. M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A. (2004) Gaussian 03. Gaussian, Inc., Wallingford CT.

20.
Green, D.H., Eggings, S.M., and Yaxley, G. (1993) The other carbon cycle. Nature, 365, 210-211. crossref(new window)

21.
Holloway, J.R. and Blank, J.G. (1994). Application of experimental results to C-O-H species in natural melts. In: Carroll, M. R. and Holloway, J. R.(eds.) Volatiles in magmas, Mineral. Soc. America, 30, 187-230.

22.
Hugh-Jones, D.A. and Angel, R.J. (1994) A compressional study of $MgSiO_{3}$ orthoenstatite up to 8.5 GPa. Am. Mineral., 79, 405-410.

23.
Jambon, A. (1994). Earth degassing and large-scale geochemical cycling of volatile elements. In: Carroll, M.R. and Holloway, J.R.(eds.) Volatiles in magmas, Mineral. Soc. America, 30, 479-517.

24.
Keppler, H., Wiedenbeck, M., and Shcheka, S.S. (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth's mantle. Nature, 424, 414-416.

25.
Kerrick, D.M. and Connolly, J.A.D. (2001) Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett., 189, 19-29. crossref(new window)

26.
Kim, Fei, and Lee (in preparation)

27.
King, P.L. and Holloway, J.R. (2002) $CO_{2}$ solubility and speciation in intermediate (andesitic) melts: the role of $H_{2}O$ and composition. Geochim. Cosmochim. Acta, 66, 1627-1640. crossref(new window)

28.
Kohn, S.C., Dupree, R., and Smith, M.E. (1989) A multinuclear magnetic-resonance study of the structure of hydrous albite glasses. Geochim. Cosmochim. Acta, 53, 2925-2935. crossref(new window)

29.
Kohn, S.C., Brooker, R.A., and Dupree, R. (1991) C-13 MAS NMR - A method for studying $CO_{2}$ speciation in glasses. Geochim. Cosmochim. Acta, 55, 3879-3884. crossref(new window)

30.
Kubicki, J.D. and Stolper, E.M. (1995) Structural roles of $CO_{2}$ and $CO_{3}^{2-}$- in fully polymerized sodium aluminosilicate melts and glasses. Geochim. Cosmochim. Acta, 59, 683-698. crossref(new window)

31.
Luth, R.W. (2003) Mantle volatiles-distribution and consequences. In: Heinrich, D.H., and Karl, K. T. (eds.) Treatise on Geochemistry, Pergamon, 319-361.

32.
McQuarrie, D.A. and Simon, J.D. (1997) Physical chemistry: a molecular approach, University Science Books, Sausalito, 1360p.

33.
Morizet, Y., Paris, M., Gaillard, F., and Scaillet, B. (2010) C-O-H fluid solubility in haplobasalt under reducing conditions: An experimental study. Chem. Geol., 279, 1-16. crossref(new window)

34.
Mysen, B.O., Fogel, M.L., Morrill, P.L., and Cody, G. D. (2009) Solution behavior of reduced C-OH volatiles in silicate melts at high pressure and temperature. Geochim. Cosmochim. Acta, 73, 1696-1710. crossref(new window)

35.
Mysen, B.O., Arculus, R.J., and Eggler, D.H. (1975) Solubility of carbon-dioxide in melts of andesite, tholeiite, and olivine nephelinite composition to 30 kbar pressure. Contrib. Mineral. Petrol., 53, 227-239. crossref(new window)

36.
Nowak, M., Schree, D., and Spickenbom, K. (2004) Argon and $CO_{2}$ on the race track in silicate melts: A tool for the development of a CO, speciation and diffusion model. Geochim. Cosmochim. Acta, 68, 5127-5138. crossref(new window)

37.
Pawley, A.R., Holloway, J.R., and McMillan, P.F. (1992) The effect of oxygen fugacity on the solubility of carbon oxygen fluids in basaltic melt. Earth Planet. Sci. Lett., 110, 213-225. crossref(new window)

38.
Pearce, M.L. (1964) Solubility of carbon dioxide and variation of oxygen ion activity in soda-silicate melts. J. Am. Ceram. Soc., 47, 342-347. crossref(new window)

39.
Rockafellow, E.M., Fang, X., Trewyn, B.G., Schmidt-Rohr, K., and Jenks, W.S. (2009) Solid-state $^{13}C$ NMR characterization of carbon-modified $TiO_{2}$. Chem. Mater., 21, 1187-1197. crossref(new window)

40.
Richet, P. and Bottinga, Y. (1984) Anorthite, andesine, wollastonite, diopside, cordierite, and pyrope: Thermodynamics of melting, glass transitions, and properties of the amorphous phases. Earth Planet. Sci. Lett., 67, 415-432. crossref(new window)

41.
Shcheka, S.S., Wiendenbeck, M., Frost, D.J., and Keppler, H. (2006) Carbon solubility in mantle minerals. Earth Planet. Sci. Lett., 245, 730-742. crossref(new window)

42.
Stolper, E., Fine, G., Johnson, T., and Newman, S. (1987) Solubility of carbon dioxide in albitic melt. Am. Mineral., 72, 1071-1085.

43.
Tossell, J.A. (1995) Calculation of the C-13 NMR shieldings of the $CO_{2}$ complexes of aluminosilicates. Geochim. Cosmochim. Acta, 59, 1299-1305. crossref(new window)

44.
Tossell, J.A. (2009) Catching $CO_{2}$ in a bowl. Inorg. Chem., 48, 7105-7110. crossref(new window)

45.
Wyllie, P.J. and Tuttle, O.F. (1959) Effect of carbon dioxide on the melting of granite and feldspars. Am. J. Sci., 257, 648-655. crossref(new window)

46.
Zhang, Y. and Zindler, A. (1993) Distribution and evolution of carbon and nitrogen in Earth. Earth Planet. Sci. Lett., 117, 331-345. crossref(new window)

47.
Zucker, R. and Shim, S.H. (2009) In situ Raman spectroscopy of $MgSiO_{3}$ enstatite up to 1550 K. Am. Mineral., 94, 1638-1646. crossref(new window)