Advanced SearchSearch Tips
The Effect of Iron Content on the Atomic Structure of Alkali Silicate Glasses using Solid-state NMR Spectroscopy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Effect of Iron Content on the Atomic Structure of Alkali Silicate Glasses using Solid-state NMR Spectroscopy
Kim, Hyo-Im; Lee, Sung-Keun;
  PDF(new window)
The study on the atomic structure of iron-bearing silicate glasses has significant geological implications for both diverse igneous processes on Earth surface and ultra-low velocity zones at the core-mantle boundary. Here, we report experimental results on the effect of iron content on the atomic structure in iron-bearing alkali silicate glasses ( glasses, up to 16.07 wt% ) using and solid-state NMR spectroscopy. spin-lattice () relaxation time for the glasses decreases with increasing iron content due to an enhanced interaction between nuclear spin and unpaired electron in iron. MAS NMR spectra for the glasses show a decrease in signal intensity and an increase in peak width with increasing iron content. However, the heterogeneous peak broa-dening in MAS NMR spectra suggests the heterogeneous distribution of species around iron in iron-bearing silicate glasses. While nonbridging oxygen () and bridging oxygen (Si-O-Si) peaks are partially resolved in MAS NMR spectrum for iron-free silicate glass, it is difficult to distinguish the oxygen clusters in iron-bearing silicate glass. The Lorentzian peak shape for and MAS NMR spectra may reflect life-time broadening due to spin-electron interaction. These results demonstrate that solid-state NMR can be an effective probe of the detailed structure in iron-bearing silicate glasses.
Iron-bearing silicate glasses; and NMR;atomic structure; spin-lattice relaxation time;
 Cited by
박선영과 이성근 (2009) 다성분계 현무암질 비정질 규산염의 원자 구조에 대한 고상핵자기 공명 분광분석연구. 한국광물학회지, 22, 343-352.

이성근 (2005) 2차원 고상 핵자기 공명기를 이용한 비정질 규산염의 고압구조 및 무질서도에 대하여. 한국광물학회지, 18, 45-52

Bouhifd, M.A., Richet, P., Besson, P., Roskosz, M., and Ingrin, J. (2004) Redox state, microstructure and viscosity of a partially crystallized basalt melt. Earth. Planet. Sci. Lett., 218, 31-44. crossref(new window)

Brown, G.E., Farges, F., and Calas, G. (1995) X-ray scattering and x-ray spectroscopy studies of silicate melts. Rev. Mineral., 32, 317-410.

Calas, G. and Petiau, J. (1983) Coordination of iron in oxide glasses through high-resolution K-edge spectra - information from the pre-edge. Solid State Commun., 48, 625-629. crossref(new window)

Dingwell, D.B. and Virgo, D. (1987) The effect of oxidation-state on the viscosity of melts in the system $Na_{2}O$-FeO-$Fe_{2}O_{3}$-$SiO_{2}$. Geochim. Cosmochim. Acta., 51, 195-205. crossref(new window)

Dingwell, D.B. (1989) Shear viscosities of ferrosilicate liquids. Am. Miner., 74, 1038-1044.

Dingwell, D.B. (1991) Redox viscometry of some Fe-bearing silicate melts. Am. Miner., 76, 1560-1562.

Frydman, L. and Harwood, J.S. (1995) Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle-spinning NMR. J. Am. Chem. Soc., 117, 5367-5368. crossref(new window)

Hartman, J.S. and Sherriff, B.L. (1991) Si-29 MAS NMR of the aluminosilicate mineral kyanite - residual dipolar coupling to Al-27 and nonexponential spin-lattice relaxation. J. Phys. Chem., 95, 7575-7579. crossref(new window)

Herzberg, C. (2006) Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature, 444, 605-609. crossref(new window)

Idehara, K. (2011) Structural heterogeneity of an ultra- low-velocity zone beneath the Philippine Islands: Implications for core-mantle chemical interactions induced by massive partial melting at the bottom of the mantle. Phys. Earth. Planet. In., 184, 80-90. crossref(new window)

Kelsey, K.E., Stebbins, J.F., Du, L.S., Mosenfelder, J.L., Asimow, P.D., and Geiger, C.A. (2008) Cation order/disorder behavior and crystal chemistry of pyrope-grossular garnets: An O-17 3QMAS and Al-27 MAS NMR spectroscopic study. Am. Miner., 93, 134-143. crossref(new window)

Kelsey, K.E., Stebbins, J.F., Singer, D.M., Brown, G.E., Mosenfelder, J.L., and Asimow, P.D. (2009) Cation field strength effects on high pressure aluminosilicate glass structure: Multinuclear NMR and La XAFS results. Geochim. Cosmochim. Acta, 73, 3914-3933. crossref(new window)

Kim, H. and Lee, S.K. (2011) Probing atomic structures of iron-bearing alkali silicate glasses using solid-state NMR, in preparation.

Lange, R.A. and Navrotsky, A. (1992) Heat-capacities of $Fe_{2}O_{3}$-bearing silicate liquids. Contrib. Mineral. Petr., 110, 311-320. crossref(new window)

Lee, S.K. (2005) Microscopic origins of macroscopic properties of silicate melts and glasses at ambient and high pressure: Implications for melt generation and dynamics. Geochim. Cosmochim. Acta, 69, 3695-3710. crossref(new window)

Lee, S.K. and Stebbins, J.F. (1999) The degree of aluminum avoidance in aluminosilicate glasses. Am. Miner., 84, 937-945. crossref(new window)

Lee, S.K. and Stebbins, J.F. (2006) Disorder and the extent of polymerization in calcium silicate and aluminosilicate glasses: O-17 NMR results and quantum chemical molecular orbital calculations. Geochim. Cosmochim. Acta, 70, 4275-4286. crossref(new window)

Lee, S.K. and Stebbins, J.F. (2009) Effects of the degree of polymerization on the structure of sodium silicate and aluminosilicate glasses and melts: An O-17 NMR study. Geochim. Cosmochim. Acta, 73, 1109-1119. crossref(new window)

Lee, S.K. and Sung, S. (2008) The effect of network- modifying cations on the structure and disorder in peralkaline Ca-Na aluminosilicate glasses: O-17 3QMAS NMR study. Chem. Geol., 256, 326-333. crossref(new window)

Levitt, M.H. (2001) Spin dynamics: Basic of Nuclear Magnetic Resonance (NMR). John Wiley & Sons, LTD, Chichester.

Liebske, C., Behrens, H., Holtz, F., and Lange, R.A. (2003) The influence of pressure and composition on the viscosity of andesitic melts. Geochim. Cosmochim. Acta, 67, 473-485. crossref(new window)

Lussier, A.J., Aguiar, P.M., Michaelis, V.K., Kroeker, S., and Hawthorne, F.C. (2009) The occurrence of tetrahedrally coordinated Al and B in tourmaline: An $^{11}B$ and $^{27}Al$ MAS NMR study. Am. Miner., 94, 785-792. crossref(new window)

Maekawa, H., Maekawa, T., Kawamura, K., and Yokokawa, T. (1991) The structural groups of alkali silicate-glasses determined from Si-29 MAS NMR. J. Non-Cryst. Solids, 127, 53-64. crossref(new window)

Mysen, B.O., Virgo, D., and Seifert F.A. (1984) Redox equilibria of iron in alkaline earth silicate melts: relationships between melt structure, oxygen fugacity, temperature and properties of iron-bearing silicate liquids. Am. Miner., 69, 834-847.

Mysen, B.O. and Richet, P. (2005) Silicate Glasses and Melts: Properties and Structure Developments in Geochemistry 10, Elsevier.

Mysen, B.O., Virgo, D., Neumann, E.R., and Seifert, F.A. (1985a) Redox equilibria and the structural states of ferric and ferrous iron in melts in the system CaO-MgO-$Al_{2}O_{3}$-$SiO_{2}$-Fe-O relationships between redox equilibria, melt structure and liquidus phase-equilibria. Am. Miner., 70, 317-331.

Mysen, B.O., Virgo, D., Scarfe, C.M., and Cronin, D.J. (1985b) Viscosity and structure of iron-bearing and aluminum-bearing calcium silicate melts at 1 atm. Am. Miner., 70, 487-498.

Mysen, B.O., Virgo, D., and Seifert, F.A. (1985c) Relationships between properties and structure of aluminosilicate melts. Am. Miner., 70, 88-105.

Mysen, B.O. and Virgo, D. (1985) Iron-bearing silicate melts: relations between pressure and redox equilibria. Phys. Chem. Minerals, 12, 191-200. crossref(new window)

Nagata, K. and Hayashi, M. (2001) Structure relaxation of silicate melts containing iron oxide. J. Non-Cryst. Solids, 282, 1-6. crossref(new window)

Poulsen, S.L., Kocaba, V., Le Saout, G., Jakobsen, H.J., Scrivener, K.L., and Skibsted, J. (2009) Improved quantification of alite and belite in anhydrous Portland cements by $^{29}Si$ MAS NMR: Effects of paramagnetic ions. Solid State Nucl. Mag., 36, 32-44. crossref(new window)

Rost, S., Garnero, E.J., Williams, Q., and Manga, M. (2005) Seismological constraints on a possible plume root at the core-mantle boundary. Nature, 435, 666-669. crossref(new window)

Slichter, C.P. (1996) Principles of magnetic resonance (3rd Ed.), Springer.

Stebbins, J.F. and Kelsey, K.E. (2009) Anomalous resonances in Si-29 and Al-27 NMR spectra of pyrope ($[Mg,Fe]_{3}Al_{2}Si_{3}O_{12}$) garnets: effects of paramagnetic cations. Phys. Chem. Chem. Phys., 11, 6906-6917. crossref(new window)

Stebbins, J.F., Panero, W.R., Smyth, J.R., and Frost, D.J. (2009) Forsterite, wadsleyite, and ringwoodite ($Mg_{2}SiO_{4}$): Si-29 NMR constraints on structural disorder and effects of paramagnetic impurity ions. Am. Miner., 94, 626-629. crossref(new window)

Sugawara, T. and Akaogi, M. (2004) Calorimetry of liquids in the system $Na_{2}O$-$Fe_{2}O_{3}$-$SiO_{2}$. Am. Miner., 89, 1586-1596. crossref(new window)

Tangeman, J.A. and Lange, R.A. (1998) The effect of $Al^{3+}$, $Fe^{3+}$, and $Ti^{4+}$ on the configurational heat capacities of sodium silicate liquids. Phys. Chem. Miner., 26, 83-99. crossref(new window)

Tse, D. and Hartmann, S.R. (1968) Nuclear spin-lattice relaxation via paramagnetic centers without spin diffusion. Phys. Rev. Lett., 21, 511-514. crossref(new window)

Wang, Z.F., Cooney, T.F., and Sharma, S.K. (1993) High-temperature structural investigation of $Na_{2}O$․0.5$Fe_{2}O_{3}$․3$SiO_{2}$ and $Na_{2}O$․FeO․3$SiO_{2}$ melts and glasses. Contrib. Mineral. Petr., 115, 112-122. crossref(new window)

Wilke, M., Farges, F., Partzsch, G.M., Schmidt, C., and Behrens, H. (2007) Speciation of Fe in silicate glasses and melts by in-situ XANES spectroscopy. Am. Miner., 92, 44-56. crossref(new window)

Wilke, M., Farges, F., Petit, P.E., Brown, G.E., and Martin, F. (2001) Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study. Am. Miner., 86, 714-730. crossref(new window)

Winter, J.D. (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall, New Jersey.

Xue, X.Y., Stebbins, J.F., and Kanzaki, M. (1994) Correlations between O-17 NMR parameters and local-structure around oxygen in high-pressure silicates- implications for the structure of silicate melts at high-pressure. Am. Miner., 79, 31-42.